
A question on linear independence of square roots

Martin Klazar1

August 17, 2009

Jakub Tomek, student in my calculus class, raised the following question.
How can one show that the square roots of distinct squarefree numbers are
linearly independent over the rationals? That is, we want to prove that if
the k integers 0 < n1 < n2 < · · · < nk are squarefree (a number is called
squarefree if it is a products of mutually distinct prime numbers) and

a1

√
n1 + a2

√
n2 + · · ·+ ak

√
nk = 0, ai ∈ Q,

then a1 = a2 = · · · = ak = 0. We give a proof here; our aim is to use as little
commutative algebra as possible. Then we mention some references.

If such nontrivial linear dependence exists, for example,

a1

√
2 · 17 + a2

√
5 · 11 · 13 + a3

√
3 · 17 + a4

√
1 = 0

with all ai ∈ Q and nonzero, we single out any of the primes involved and
express its root rationally in terms of the roots of the other primes:

√
17 = −a2

√
5 ·

√
11 ·

√
13 + a4

a1

√
2 + a3

√
3

,

for example. If division was illegal, it means that a1

√
2 + a3

√
3 = 0 and we

replace the original linear dependence with this simpler one and repeat the
argument. After finitely many steps we end up with a relation

√
pk ∈ Q(

√
p1,

√
p2, . . . ,

√
pk−1)

where p1, p2, . . . , pk, k ≥ 1, are distinct prime numbers, that is,
√

pk expresses
rationally in terms of the roots

√
p1,

√
p2, . . . ,

√
pk−1. We show that such

relation is impossible.
Let us have a closer look at the displayed notation for field adjunction

which really means Q({√p1,
√

p2, . . . ,
√

pk−1}). If X ⊂ R is any set of real
numbers then Q(X) is by definition the smallest (to inclusion) subfield of the
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field R containing the set Q ∪ X. In more practical terms, it is easy to see
that the field Q(X) consists exactly of the elements∑

i aixi∑
i biyi

, ai, bi ∈ Q,

where every xi and yi is a product of (possibly repeating) elements from X
(for empty products are xi, yi equal to 1). We fix an element of X, say α,
and set X ′ = X\{α}. Taking α out we rewrite the sums in the denominator
and numerator as

c0 + c1α + c2α
2 + · · ·+ ckα

k

d0 + d1α + d2α2 + · · ·+ dlαl
, ci, di ∈ Q(X ′).

If α2 ∈ Q then, as αi ∈ Q for even i and αi = αi−1α, αi−1 ∈ Q, for odd i, we
can simplify the sums to

a + bα

c + dα
, a, b, c, d ∈ Q(X ′).

Multiplying the denominator and numerator by c − dα (which is nonzero
unless α ∈ Q(X ′)), we get

(a + bα)(c− dα)

(c + dα)(c− dα)
=

ac− bdα2

c2 − d2α2
+

bc− ad

c2 − d2α2
· α = a′ + b′α, a′, b′ ∈ Q(X ′).

To summarize, if X = X ′ ∪ {α} is any set of real numbers and α2 ∈ Q, then
Q(X) consists exactly of the elements

a + bα, a, b ∈ Q(X ′).

(If α ∈ Q(X ′), we may set always b = 0.)
Now we state and prove a result showing that relations like

√
pk ∈ Q(

√
p1,

√
p2, . . . ,

√
pk−1), p1 < p2 < · · · < pk all prime,

are impossible. We introduce a notation. If α1, α2, . . . is an infinite sequence
of real numbers and I ⊂ N, where N = {1, 2, 3, . . . }, is a finite set, we write

α(I) =
∏
i∈I

αi and Q([I]) = Q({αi | i ∈ I}).
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Then α(∅) = 1 (empty product) and Q([∅]) = Q.

Proposition. Let α1, α2, . . . be real numbers such that α(I) 6∈ Q for every
finite and nonempty set I ⊂ N (in particular, no αi is in Q) but every square
α2

i is in Q. Then for every two finite sets I, J ⊂ N with I 6= ∅ and I ∩ J = ∅
we have

α(I) 6∈ Q([J ]).

Proof. We proceed by contradiction and take a minimum counterexample,
which is a membership

α(I) ∈ Q([J ]),

where I, J are finite and disjoint subsets of N, I 6= ∅ and the cardinality of J
is minimum. By the assumption on αi, the set J is nonempty as well. We
take arbitrary index l ∈ J and set J ′ = J\{l}. As we noted above,

α(I) = a + bαl, a, b ∈ Q([J ′]).

Squaring gives
2abαl = α(I)2 − a2 − b2α2

l .

By the assumption on αi, the right side is in Q([J ′]). We distinguish three
cases. For ab 6= 0 division by 2ab in the last equality shows that αl =
α({l}) ∈ Q([J ′]), which is a smaller counterexample. If b = 0 then again
α(I) = a ∈ Q([J ′]) is a smaller counterexample. Finally, in the last and
crucial case when a = 0 we have α(I) = bαl. Multiplying by αl, we get

α(I ∪ {l}) = α(I)αl = bα2
l ∈ Q([J ′])

(note that l 6∈ I), which is again a smaller counterexample. We have contra-
diction in all three cases. 2

The sequence αi =
√

pi, where

p1 = 2 < p2 = 3 < p3 = 5 < . . .

is the sequence of all prime numbers, satisfies the assumption because α(I) =√
p(I), I 6= ∅, is always irrational. Thus

√
pk 6∈ Q({√pj | j ∈ J}) if k 6∈ J ,

in fact even
√

p(I) 6∈ Q({√pj | j ∈ J}) if I 6= ∅ and I ∩ J = ∅ (but the cases
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|I| = 1 and |I| ≥ 1 are in fact equivalent), and the original question on linear
independence of roots is answered.

As for the references, inspection of the memory and (manual!) search of
the library first revealed that the textbooks by Hlawka, Schoißengaier and
Taschner [4, Exercise 7 to Chapter 2] and Laczkovich [5, Exercises 4.2 and 4.3]
contain the original question as an exercise. They give no references but the
former book mentions useful key words “Besicovitch’s theorem”. It is then
a short way to a proof and nice discussion by Dubuque [3] and the original
paper [1] by Besicovitch. Many more references pertaining to the topic now
could be added, containing illustrious names like Mordell or Siegel, but we
leave them for the really interested reader to find and restrict only to two,
the recent article by Carr and O’Sullivan [2] and the note by Roth [6] which
contains proof almost identical to the one presented above.
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