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The classical theorem of Hindman [2] says that for any finite coloring N =
{1, 2, . . . } = C1 ∪ C2 ∪ · · · ∪ Cr of natural numbers there is a color b ∈ [r] =
{1, 2, . . . , r} and an infinite sequence 1 ≤ n1 < n2 < . . . in N such that

ni1 + ni2 + · · ·+ nik ∈ Cb

for every k-tuple 1 ≤ i1 < i2 < · · · < ik. The mapping a 7→ 2a transforms
sums into products, and we see that the Hindman theorem also holds for the
product ni1ni2 . . . nik in place of the sum. But can one combine together sums
and products? Until now it was not known if every finite coloring of N has
to contain a monochromatic pair {x + y, xy}. This problem has been recently
resolved by Moreira [4]: every finite coloring of N has a monochromatic triple
{x, x + y, xy}. We present his beautiful elementary proof ([4, Section 5] plus
some details filled in by us) below. The proof is selfcontained except for the
proof of van der Waerden’s theorem, which is easily found in the literature or
on the Internet. We intend to include Moreira’s theorem in [3] in the chapter
on arithmetic progressions.

Two comments before we plunge in the proof. By a general argument, exis-
tence of one monochromatic triple {x, x+y, xy} in any finite coloring of N forces
existence of infinitely many such triples; if a finite coloring existed with only
finitely many such triples, we could recolor points in them and obtain a finite
coloring with no such triple. This tacitly uses that always |{x, x + y, xy}| ≥ 2;
for N0 = {0, 1, . . . } in place of N we would have to exclude the trivial triple for
x = y = 0. Also, the theorem is equivalent to the finite version that for every
r ∈ N there is an n = n(r) ∈ N such that for any r-coloring f : [n] → [r]
there exist x, y ∈ [n] such that x + y, xy ∈ [n] and f(x) = f(x + y) = f(xy).
Equivalence of both versions of the theorem follows by the usual compactness
argument; if for some r there were no such n(r), we could paste the bad r-
colorings of [n], n = 1, 2, . . . , into a bad r-coloring of N. We prove the infinite
version.
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Theorem (Moreira [4], 2016). For any finite coloring

N = C1 ∪ C2 ∪ · · · ∪ Cr

there exist a b ∈ [r] and x, y ∈ N such that {x, x + y, xy} ⊂ Cb.

Proof. A set X ⊂ N is piecewise syndetic, or briefly a ps set, if there is a c ∈ N
such that for every k ∈ N there is a k-tuple n1 < n2 < · · · < nk of elements in
X such that ni+1 − ni ≤ c for every i = 1, 2, . . . , k − 1. We call such tuple a
c-run in X with length k. N is a ps set. It is clear that if X,Y ⊂ N, X is a ps
set, and Y = f(X) where f : R→ R is an affine (nonconstant) mapping, then
Y is a ps set. The same if Y ⊃ X. We begin with proving that ps sets have
Ramsey property.

• If N ⊃ X = C1 ∪C2 ∪ · · · ∪Cr and X is a ps set then some Ci is a ps set.

It suffices to prove it for r = 2. Suppose that X is red-blue colored and tk,
k = 1, 2, . . . , are c-runs in X with length k. Let b(tk) be the number of blue
numbers in tk. If b(tk) are bounded, say b(tk) ≤ d ∈ N for every k, then by
omitting all blue numbers from all tk we get c(d + 1)-runs of red numbers with
length going to infinity. So we assume that b(tk) are unbounded and passing
to a subsequence we may assume that b(tk) → ∞. Let g(tk) be the maximum
distance between two consecutive blue numbers in tk. If it is unbounded then
the red numbers between two distant consecutive blue numbers in tk form c-runs
of red numbers with length going to infinity. So we may assume that g(tk) ≤ d
for a d ∈ N for every k. But then the blue numbers in tk form d-runs of blue
numbers with length going to infinity.

The following is the classical van der Waerden theorem.

• For every k, r ∈ N there is an n = n(r, k) ∈ N such that any r-coloring
f : [n]→ [r] contains a monochromatic k-term arithmetic progression,

f(a) = f(a + d) = f(a + 2d) = · · · = f(a + (k − 1)d)

for some a, d ∈ [n] with a + (k − 1)d ∈ [n].

This was proven by van der Waerden [5]. For a short (less than 1 page) combi-
natorial proof see Graham, Spencer and Rothschild [1].

The next property of ps sets is crucial.

• If F ⊂ N is finite and X ⊂ N is a ps set then there is an n ∈ N such that

Y = X ∩
⋂

m∈F
(X −mn)

is a ps set.

To prove it, we take c-runs tk, k ∈ N, in X with length k and, using the vdW
theorem, set m = n(c, 1 + f) where f = maxF . We partition each interval
of integers Ik = [min tk,max tk] into (disjoint and consecutive) intervals Jk,i,
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i = 1, 2, . . . , b|Ik|/mc, each with length m, and the possibly shorter residual
interval. We color each Jk,i with colors {0, 1, . . . , c− 1}, the color of a ∈ Jk,i is
the distance to the preceding closest element of X (so a has color 0 iff a ∈ X).
By the vdW theorem, every Jk,i contains a monochromatic (1 + f)-term AP.
Shifting it down by its color, we get a (1 + f)-term AP Ak,i ⊂ J ′k,i ∩X, where
J ′k,i = [minJk,i − c,max Jk,i]. Let ak,i and dk,i be, respectively, the first term
and the common difference of Ak,i. Clearly, ak,i ∈ Y if n = dk,i (where Y is as
stated). Let Y ′ be the set of all ak,i. We have Y ′ ⊂ X and from ak,i ∈ J ′k,i and
ak,i+1 − ak,i < 2m + c it follows that Y ′ is a ps set. We give to each ak,i the
color dk,i. As dk,i < m, this is a finite coloring of Y ′. By the Ramsey property
of ps sets (proved above), there is a monochromatic ps set Y ′′ ⊂ Y ′. For n equal
to the color of Y ′′ one has Y ⊃ Y ′′ and so Y is a ps set.

We start the proper proof of the theorem. Let N = C1 ∪ C2 ∪ · · · ∪ Cr,
r ≥ 2, be a finite coloring of natural numbers. We define inductively numbers
n1, . . . , nr ∈ N, ps sets X0, . . . , Xr, Y1, . . . , Yr ⊂ N, and colors r0, . . . , rr ∈ [r]
so that Xi ⊂ Cri for every i. First we select r0 ∈ [r] so that X0 := Cr0 is a
ps set (using the Ramsey property of ps sets). If 0 < i ≤ r (and the quantities
n−, X−, Y−, and r− with indices smaller than i have been already defined), we
apply the above crucial property of ps sets and take ni ∈ N such that

Yi := Xi−1 ∩
i⋂

j=1

(Xi−1 − n2
j . . . n

2
i−1ni)

is a ps set (for i = j the empty product n2
j . . . n

2
i−1 = 1). Since niYi is a ps

set, there is an ri ∈ [r] such that Xi := niYi ∩ Cri is a ps set. This finishes the
inductive definition.

From Xi ⊂ niYi ⊂ niXi−1 we get by iteration, for any 0 ≤ j < i ≤ r, the
inclusion Xi ⊂ nj+1 . . . niXj . By the pigeonhole principle, there exist 0 ≤ j <
i ≤ r with ri = rj . We take any x′ ∈ Xi and set

y := nj+1 . . . ni and x := x′/y

(x ∈ N by the inclusion). We show that {x, x + y, xy} ⊂ Cri , which will finish
the proof. Indeed, xy = x′ ∈ Xi ⊂ Cri and, by the inclusion, xy ∈ Xi ⊂ yXj ,
giving x ∈ Xj ⊂ Crj = Cri . Finally,

(x + y)y = x′ + y2 ∈ Xi + y2 ⊂ niYi + y2

(the definition of Yi) ⊂ ni(Xi−1 − n2
j+1 . . . n

2
i−1ni) + y2

(the inclusion) ⊂ ni(nj+1 . . . ni−1Xj − n2
j+1 . . . n

2
i−1ni) + y2

(the definition of y) = yXj − y2 + y2 = yXj

and x + y ∈ Xj ⊂ Crj = Cri . 2
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