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Proposition 6.4.1. S.uppose that r > 0 is a real number, I D [0,7] is an opeﬁ
- interval, f: I — R is a function satisfying on I the differential equation

, . f=af, aeR\{0},
and f(0) # ;f(r) or f'(0) # f'(r). Then at least one of the four ndmbers.
a, c1 =rf(0) +7f(r), cz = f'(r) — F(0), and r?
15 irrational.- 4 ‘

Proof. For n € Ny, let f,.(x) = x”(r — z)*/n! and o

fn-—-/rfnx =—/ ”(r—m”f )

Then, since (af) = f and, for n > 1, fn(O) = fu(r) = 0, we have Io/a =
f(r) = f'(0) and Il/a_“fo A= ~—?“f0 Fr+2 fyzf =r(f0) + f(r)) -
2a({6) = £10). This ~

_ Iy =acy; and I = dic; — 2a%¢; .
" Forn > 2 we have

2 2(r —g)" 4+ 2(r — 2)"2 - 2ng™ L (r — z)1

TIL/(:E) =. ] (,n_z)! ’ - o (n—1)
@2 r )" 2(rP = 22(r —z))  2nz"l(r —g)"!
- “(n—2)L a (n—1)!

= % () — (4n = 2) fr-1(2)

“and, integrating by parts and'using the above relations and f2(0).= f.(r) =0, o ‘

I, = /fn(x =—oz/ fn dx—a/ f”(:z; )f(z) dz
o= al2- 4n)In_1+oz'r2In 2.

It follows by 1nduct10n on n that I is a polynonnal in Z[a c1, ¢, 7% with degree
~at most n + 2. For any § > 0 we have"

|I,| < 6™ for n.> ng, and I, # 0 for inﬁnitely many n .

The upper bound ‘is clear because by the definition I,, < 72" /nl. If I, = 0 for *
_every n > ng, or even if I, = n_|.1 = 0, then by running the recurrence for I,
- backwards - (whlch we can as ar? # 0 is constant) we deduce that I, = 0 for -
every n € Ny, in contrary with the assumptlon that ¢; # 0 or ¢ 75 0 and hence
Jo#0or Iy #0.

Now assume to the contrary that all four numbers a, c1, ¢z, and r2 are ra-’
tional. Let a € N be their common denominator. Then an+21 € Z for every
n € Ny and is nonzero for infinitely many n, in particular l[a™+21,| > 1 for
infinitely many n. At the same tlme a™*t2], - 0-as n-— oo, which is a contra-
dlctlon _ : ‘ ‘ o
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Corollary 6.4.2 (irrationality of e?/? and WQ). For every nonzero r € Q,
the number e is-irrational. Also, the number 72 is irrational. In particular,
‘the numbers e and T are irrational. ' ‘

. Proof We first apply Proposition 6.4.1 to rat1onal r > 0 and function f(z) =

z. for r < 0 we use that " = 1/e™". As e® = (e%)’ = (¢%)", we have a = 1.
Since a,rr? € Q,c; =r+re” >0 and ¢y = ¢ — 1, we conclude that €” is
irrational. Then we apply Proposition 6.4.1 to 7 = 7 and function f(z) = sinz.
As (sinz) = cosz and (sinz)” = —sinz, we have o = —1. Now oo = =1, ¢; =0
and ¢; = —2, and we conclude that 2 = 72 is irrational. ‘ O

Theorem 6.4.3 (Apéry, 1979). The number

@3 = i1—1+l+1+i+ -—{1
nd 8 27 64 B

n=1"

18 irrational. ’ B

65 I‘I'anspendence |
Theorem 6.5.1 (H’e"rnﬁte, 1873). Euler’s number e = 2.71828... 18 tmh-‘v
scendental. ’ o : C
Proof. We suppose that e-satisﬁes a polyﬁomial equation

o aget + - +ale+a0—0 deN, a; €7Z, ag #0,

and deduce a contradiction. (We can achleve nonzero constant term in the
equation by dividing out a power of e.) We use the property of e that (e%)’ =

e*. Using it and integration by parts one proves by induction on n € Ny

that f +° zne== dz = nl. Hence, more generally, for every polynomlal p( )
,b0+b1:c+ -+ bpa™ € Zz], :

 /+ (ac)e xdm——Zbkk'
0 .

k=0

Let pn(w) =z™(z - 1)z - 2)...(z— d))"+1, then

00 - ) : C
a(j/ pr(2)e™® dz = ag(xd)" ' nl +7(n) - (n+ 1)}, 7(n) €Z.
. 0. . ‘

N

For k : 1,2,...,d vs}'e have, by the substit:,ution y=z—k,
. ‘ 400 - ’ +o0 -
ake’“/- pn(z)e ®dr = ak/. prly +k)e”¥ dy
0 s —k

0 . ptoo »
ak/' ...dy—l—ak/ pn(y+k)e ™ dy .
—k 0 -
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