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Introduction

Let P and be Q finite sets of points in R2 in general position.

Let (X )p be the set of all ordered p-tuples of distinct elements from X .

We use ∆P : (P)3 → {−,+} to denote the function that assigns an
orientation to every triple from (P)3.

The sets P and Q have the same order type if there is a bijection
f : P → Q such that every T ∈ (P)3 has the same orientation as f (T ).
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Let (X )p be the set of all ordered p-tuples of distinct elements from X .

We use ∆P : (P)3 → {−,+} to denote the function that assigns an
orientation to every triple from (P)3.

The sets P and Q have the same order type if there is a bijection
f : P → Q such that every T ∈ (P)3 has the same orientation as f (T ).



Ramsey point sets

For k , p ∈ N, a point set Q is (k , p)-Ramsey if there is a point set P
such that for every k-coloring of

(
P
p

)
there is a subset of P that has

monochromatic p-tuples and has the same order type as Q.

Which point sets are (k , p)-Ramsey?

Known results (Nešeťril and Valtr, 1994–98):

For k ∈ N, all point sets are (k , 1)-Ramsey.
If k , p ≥ 2, then not all point sets are (k , p)-Ramsey.
For k ∈ N, the non-convex 4-tuple is (k , 2)-Ramsey.
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Known results (Nešeťril and Valtr, 1994–98):

For k ∈ N, all point sets are (k , 1)-Ramsey.
If k , p ≥ 2, then not all point sets are (k , p)-Ramsey.
For k ∈ N, the non-convex 4-tuple is (k , 2)-Ramsey.



Ramsey point sets

For k , p ∈ N, a point set Q is (k , p)-Ramsey if there is a point set P
such that for every k-coloring of

(
P
p

)
there is a subset of P that has

monochromatic p-tuples and has the same order type as Q.

Q
P

k = 2 = p

Which point sets are (k , p)-Ramsey?
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Ordered Ramsey point sets

We introduce a new family of (k , 2)-Ramsey point sets.
To do so, we first introduce an ordered variant of (k , p)-Ramsey sets.
Point sets P = {p1, . . . , pn} and Q = {q1, . . . , qn} ordered by increasing
x-coordinate have the same signature, if ∆P(pi , pj , pk) = ∆Q(qi , qj , qk)
for all 1 ≤ i < j < k ≤ n.
Distinguishing point sets by signatures is finer than by order types.

A point set Q is ordered (k , p)-Ramsey if there is a point set P such
that for every k-coloring of

(
P
p

)
there is a subset of P that has

monochromatic p-tuples and has the same signature as Q.
If a point set is ordered (k , p)-Ramsey, then it is (k , p)-Ramsey.
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Decomposable sets are ordered Ramsey

A point set P is decomposable if |P | = 1 or if P admits the following
partition into non-empty decomposable sets P1 and P2:

Theorem 1

For every k ∈ N, every decomposable set is ordered (k , 2)-Ramsey.

For each k ∈ N, all point sets are ordered (k , 1)-Ramsey.
For k ≥ 2 and p ≥ 3, (k , p)-Ramsey sets are exactly sets in convex
position and ordered (k , p)-Ramsey sets are exactly caps and cups.
Theorem 1 has an application in the theory of combinatorial encodings
of point sets.
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Point-set predicates

Let P be the set of all finite point sets in the plane in general position.

For t ∈ N and a finite set Z , a t-ary point-set predicate with codomain
Z is a collection Γ = {ΓP : P ∈ P}, where ΓP : (P)t → Z .

Example: ternary predicate ∆ = {∆P : P ∈ P} with codomain {−,+}.

We say that Γ encodes the order types if whenever there is a bijection
f : P → Q such that ΓP(p1, . . . , pt) = ΓQ(f (p1), . . . , f (pt)) for every
(p1, . . . , pt) ∈ (P)t , then P and Q have the same order type via f .

For n ∈ N, there are 2Θ(n3) ternary functions f : ([n])3 → {−,+}, but
only 2Θ(n log n) order types of point sets of size n.

Is the encoding by ∆ effective? Is it possible to use a binary predicate?
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Locally consistent predicates

A binary predicate that encodes the order types exists. (Felsner, 1997).
However, unlike ∆, this predicate does not behave locally.
Is there a binary predicate that encodes order types and behaves locally?

A binary predicate Γ is locally consistent on P ∈ P if, for any distinct
subsets {a1, a2, a3} and {b1, b2, b3} of P , having ΓP(ai , aj) = ΓP(bi , bj)
for every (i , j) ∈ ([3])2 implies ∆P(a1, a2, a3) = ∆P(b1, b2, b3).

Theorem 2

For every finite set Z , there is a point set P = P(Z ) such that no binary
predicate with codomain Z is locally consistent on P .

The proof is based on Theorem 1.
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Encoding wheel sets

What can we encode with locally consistent predicates?

Codomains of size only 2 are already sufficient to encode exponentially
many order types of point sets of size n for every n ∈ N.

Proposition 1

The order types of wheel sets can be encoded with a binary predicate Φ with
codomain {−,+} such that Φ is locally consistent on all wheel sets.
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Encoding small sets

Let h(k) be the largest integer such that there is a binary predicate with
codomain of size k that is locally consistent on all point sets of size
h(k) and that encodes their order types.

By Theorem 2, h(k) is finite for every k ∈ N.

We show a superlinear lower bound on h(k).

Proposition 2

We have h(k) ≥ c · k3/2 for some constant c > 0.

The proof is based on Lovász’s Local Lemma and the fact that there are
only 2O(k log k) order types of point sets of size k .

Question 1

What is the growth rate of h(k)?
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An open problem about ordered Ramsey sets

Recall that all point sets are ordered (k , 1)-Ramsey, but not ordered
(k , 2)-Ramsey. Ordered (k , p)-Ramsey sets for p ≥ 3 are caps and cups.
Signatures can be defined also for generalized point sets, where lines are
replaced by pseudolines. We can thus introduce ordered (k , p)-Ramsey
generalized point sets.
For p = 1 and p ≥ 3, analogous results hold for generalized point sets.
However, the case p = 2 is wide open.

Question 2

Is there a generalized point set that is not ordered (2, 2)-Ramsey?

Generalized point sets correspond to ordered 3-uniform hypergraphs
with 8 forbidden induced sub-hypergraphs. However, known structural
results do not seem to apply here.
All ordered 3-uniform hypergraphs are ordered (2, 2)-Ramsey (Nešeťril
and Rödl, 1983).

Thank you.
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