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e Which point sets are (k, p)-Ramsey?

e Known results (Nesetfil and Valtr, 1994-98):
o For k € N, all point sets are (k, 1)-Ramsey.
o If k,p > 2, then not all point sets are (k, p)-Ramsey.
o For k € N, the non-convex 4-tuple is (k,2)-Ramsey.
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Ordered Ramsey point sets

e We introduce a new family of (k,2)-Ramsey point sets.

e To do so, we first introduce an ordered variant of (k, p)-Ramsey sets.

e Point sets P = {p1,...,p,} and Q = {q1,...,q,} ordered by increasing
x-coordinate have the same signature, if Ap(p;, pj, px) = Do(4i, gj, q«)
forall 1<i<j<k<n.

e Distinguishing point sets by signatures is finer than by order types.
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Same order type, distinct signatures.

e A point set Q is ordered (k, p)-Ramsey if there is a point set P such
that for every k-coloring of (Z) there is a subset of P that has
monochromatic p-tuples and has the same signature as Q.

e If a point set is ordered (k, p)-Ramsey, then it is (k, p)-Ramsey.
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Decomposable sets are ordered Ramsey

e A point set P is decomposable if |P| =1 or if P admits the following
partition into non-empty decomposable sets P; and Ps:

Theorem 1

For every k € N, every decomposable set is ordered (k, 2)-Ramsey.

e For each k € N, all point sets are ordered (k, 1)-Ramsey.

e For k > 2 and p > 3, (k, p)-Ramsey sets are exactly sets in convex
position and ordered (k, p)-Ramsey sets are exactly caps and cups.

@ Theorem 1 has an application in the theory of combinatorial encodings

of point sets.
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e Let P be the set of all finite point sets in the plane in general position.

e For t € N and a finite set Z, a t-ary point-set predicate with codomain
Zis a collection [ = {l'p: P € P}, where I'p: (P): — Z.

e Example: ternary predicate A = {Ap: P € P} with codomain {—, +}.

e We say that [ encodes the order types if whenever there is a bijection
f: P— Q such that Tp(p1,...,p:) =To(f(p1),...,f(p:)) for every
(p1,.-.,pt) € (P)s, then P and @ have the same order type via f.

e For n € N, there are 2°(") ternary functions f : ([n])s — {—,+}, but
only 28(n°e") order types of point sets of size n.

@ Is the encoding by A effective? Is it possible to use a binary predicate?
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Encoding small sets

e Let h(k) be the largest integer such that there is a binary predicate with
codomain of size k that is locally consistent on all point sets of size
h(k) and that encodes their order types.

e By Theorem 2, h(k) is finite for every k € N.
e We show a superlinear lower bound on h(k).

Proposition 2
We have h(k) > c - k3/2 for some constant ¢ > 0.

@ The proof is based on Lovasz's Local Lemma and the fact that there are
only 20(klogk) order types of point sets of size k.

Question 1
What is the growth rate of h(k)?
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e Recall that all point sets are ordered (k, 1)-Ramsey, but not ordered
(k,2)-Ramsey. Ordered (k, p)-Ramsey sets for p > 3 are caps and cups.

e Signatures can be defined also for generalized point sets, where lines are
replaced by pseudolines. We can thus introduce ordered (k, p)-Ramsey
generalized point sets.

e For p =1 and p > 3, analogous results hold for generalized point sets.
However, the case p = 2 is wide open.

Question 2
Is there a generalized point set that is not ordered (2,2)-Ramsey?

e Generalized point sets correspond to ordered 3-uniform hypergraphs
with 8 forbidden induced sub-hypergraphs. However, known structural
results do not seem to apply here.

e All ordered 3-uniform hypergraphs are ordered (2,2)-Ramsey (Nesetfil
and Rodl, 1983).

Thank you.



