Induced Ramsey-type results and binary predicates for point sets

Martin Balko, Jan Kynčl, Stefan Langerman, Alexander Pilz

Charles University and Ben-Gurion University of the Negev

August 31, 2017

• Let P and be Q finite sets of points in \mathbb{R}^2 in general position.

• Let $(X)_p$ be the set of all ordered p-tuples of distinct elements from X.

- Let $(X)_p$ be the set of all ordered p-tuples of distinct elements from X.
- We use $\Delta_P : (P)_3 \to \{-,+\}$ to denote the function that assigns an orientation to every triple from $(P)_3$.

- Let $(X)_p$ be the set of all ordered p-tuples of distinct elements from X.
- We use $\Delta_P : (P)_3 \to \{-,+\}$ to denote the function that assigns an orientation to every triple from $(P)_3$.

- Let $(X)_p$ be the set of all ordered p-tuples of distinct elements from X.
- We use $\Delta_P : (P)_3 \to \{-,+\}$ to denote the function that assigns an orientation to every triple from $(P)_3$.

- Let $(X)_p$ be the set of all ordered p-tuples of distinct elements from X.
- We use $\Delta_P : (P)_3 \to \{-,+\}$ to denote the function that assigns an orientation to every triple from $(P)_3$.
- The sets P and Q have the same order type if there is a bijection
 f: P → Q such that every T ∈ (P)₃ has the same orientation as f(T).

- Let $(X)_p$ be the set of all ordered p-tuples of distinct elements from X.
- We use $\Delta_P : (P)_3 \to \{-,+\}$ to denote the function that assigns an orientation to every triple from $(P)_3$.
- The sets P and Q have the same order type if there is a bijection
 f: P → Q such that every T ∈ (P)₃ has the same orientation as f(T).

The same order type.

- Let $(X)_p$ be the set of all ordered p-tuples of distinct elements from X.
- We use $\Delta_P : (P)_3 \to \{-,+\}$ to denote the function that assigns an orientation to every triple from $(P)_3$.
- The sets P and Q have the same order type if there is a bijection
 f: P → Q such that every T ∈ (P)₃ has the same orientation as f(T).

• For $k, p \in \mathbb{N}$, a point set Q is (k, p)-Ramsey if there is a point set P such that for every k-coloring of $\binom{P}{p}$ there is a subset of P that has monochromatic p-tuples and has the same order type as Q.

• Which point sets are (k, p)-Ramsey?

- Which point sets are (k, p)-Ramsey?
- Known results (Nešetřil and Valtr, 1994–98):

- Which point sets are (k, p)-Ramsey?
- Known results (Nešetřil and Valtr, 1994–98):
 - For $k \in \mathbb{N}$, all point sets are (k, 1)-Ramsey.

- Which point sets are (k, p)-Ramsey?
- Known results (Nešetřil and Valtr, 1994–98):
 - For $k \in \mathbb{N}$, all point sets are (k, 1)-Ramsey.
 - If $k, p \ge 2$, then not all point sets are (k, p)-Ramsey.

- Which point sets are (k, p)-Ramsey?
- Known results (Nešetřil and Valtr, 1994–98):
 - For $k \in \mathbb{N}$, all point sets are (k, 1)-Ramsey.
 - If $k, p \ge 2$, then not all point sets are (k, p)-Ramsey.
 - For $k \in \mathbb{N}$, the non-convex 4-tuple is (k, 2)-Ramsey.

• We introduce a new family of (k, 2)-Ramsey point sets.

- We introduce a new family of (k, 2)-Ramsey point sets.
- To do so, we first introduce an ordered variant of (k, p)-Ramsey sets.

- We introduce a new family of (k, 2)-Ramsey point sets.
- To do so, we first introduce an ordered variant of (k, p)-Ramsey sets.
- Point sets $P = \{p_1, \dots, p_n\}$ and $Q = \{q_1, \dots, q_n\}$ ordered by increasing x-coordinate have the same signature, if $\Delta_P(p_i, p_j, p_k) = \Delta_Q(q_i, q_j, q_k)$ for all 1 < i < j < k < n.

- We introduce a new family of (k, 2)-Ramsey point sets.
- To do so, we first introduce an ordered variant of (k, p)-Ramsey sets.
- Point sets $P = \{p_1, \dots, p_n\}$ and $Q = \{q_1, \dots, q_n\}$ ordered by increasing x-coordinate have the same signature, if $\Delta_P(p_i, p_j, p_k) = \Delta_Q(q_i, q_j, q_k)$ for all $1 \le i < j < k \le n$.
- Distinguishing point sets by signatures is finer than by order types.

- We introduce a new family of (k, 2)-Ramsey point sets.
- To do so, we first introduce an ordered variant of (k, p)-Ramsey sets.
- Point sets $P = \{p_1, \ldots, p_n\}$ and $Q = \{q_1, \ldots, q_n\}$ ordered by increasing x-coordinate have the same signature, if $\Delta_P(p_i, p_j, p_k) = \Delta_Q(q_i, q_j, q_k)$ for all $1 \le i < j < k \le n$.
- Distinguishing point sets by signatures is finer than by order types.

- We introduce a new family of (k, 2)-Ramsey point sets.
- To do so, we first introduce an ordered variant of (k, p)-Ramsey sets.
- Point sets $P = \{p_1, \ldots, p_n\}$ and $Q = \{q_1, \ldots, q_n\}$ ordered by increasing x-coordinate have the same signature, if $\Delta_P(p_i, p_j, p_k) = \Delta_Q(q_i, q_j, q_k)$ for all $1 \le i < j < k \le n$.
- Distinguishing point sets by signatures is finer than by order types.

Same order type, distinct signatures.

- We introduce a new family of (k, 2)-Ramsey point sets.
- To do so, we first introduce an ordered variant of (k, p)-Ramsey sets.
- Point sets $P = \{p_1, \ldots, p_n\}$ and $Q = \{q_1, \ldots, q_n\}$ ordered by increasing x-coordinate have the same signature, if $\Delta_P(p_i, p_j, p_k) = \Delta_Q(q_i, q_j, q_k)$ for all $1 \le i < j < k \le n$.
- Distinguishing point sets by signatures is finer than by order types.

Same order type, distinct signatures.

• A point set Q is ordered (k, p)-Ramsey if there is a point set P such that for every k-coloring of $\binom{P}{p}$ there is a subset of P that has monochromatic p-tuples and has the same signature as Q.

- We introduce a new family of (k, 2)-Ramsey point sets.
- To do so, we first introduce an ordered variant of (k, p)-Ramsey sets.
- Point sets $P = \{p_1, \ldots, p_n\}$ and $Q = \{q_1, \ldots, q_n\}$ ordered by increasing x-coordinate have the same signature, if $\Delta_P(p_i, p_j, p_k) = \Delta_Q(q_i, q_j, q_k)$ for all 1 < i < j < k < n.
- Distinguishing point sets by signatures is finer than by order types.

Same order type, distinct signatures.

- A point set Q is ordered (k, p)-Ramsey if there is a point set P such that for every k-coloring of $\binom{P}{p}$ there is a subset of P that has monochromatic p-tuples and has the same signature as Q.
- If a point set is ordered (k, p)-Ramsey, then it is (k, p)-Ramsey.

• A point set P is decomposable if |P| = 1 or if P admits the following partition into non-empty decomposable sets P_1 and P_2 :

Theorem 1

For every $k \in \mathbb{N}$, every decomposable set is ordered (k, 2)-Ramsey.

• A point set P is decomposable if |P| = 1 or if P admits the following partition into non-empty decomposable sets P_1 and P_2 :

Theorem 1

For every $k \in \mathbb{N}$, every decomposable set is ordered (k, 2)-Ramsey.

• For each $k \in \mathbb{N}$, all point sets are ordered (k, 1)-Ramsey.

• A point set P is decomposable if |P| = 1 or if P admits the following partition into non-empty decomposable sets P_1 and P_2 :

Theorem 1

For every $k \in \mathbb{N}$, every decomposable set is ordered (k, 2)-Ramsey.

- For each $k \in \mathbb{N}$, all point sets are ordered (k, 1)-Ramsey.
- For $k \ge 2$ and $p \ge 3$, (k, p)-Ramsey sets are exactly sets in convex position and ordered (k, p)-Ramsey sets are exactly caps and cups.

• A point set P is decomposable if |P| = 1 or if P admits the following partition into non-empty decomposable sets P_1 and P_2 :

Theorem 1

For every $k \in \mathbb{N}$, every decomposable set is ordered (k, 2)-Ramsey.

- For each $k \in \mathbb{N}$, all point sets are ordered (k, 1)-Ramsey.
- For $k \ge 2$ and $p \ge 3$, (k, p)-Ramsey sets are exactly sets in convex position and ordered (k, p)-Ramsey sets are exactly caps and cups.
- Theorem 1 has an application in the theory of combinatorial encodings of point sets.

ullet Let ${\mathcal P}$ be the set of all finite point sets in the plane in general position.

- ullet Let ${\mathcal P}$ be the set of all finite point sets in the plane in general position.
- For $t \in \mathbb{N}$ and a finite set Z, a t-ary point-set predicate with codomain Z is a collection $\Gamma = {\Gamma_P : P \in \mathcal{P}}$, where $\Gamma_P : (P)_t \to Z$.

- ullet Let ${\mathcal P}$ be the set of all finite point sets in the plane in general position.
- For $t \in \mathbb{N}$ and a finite set Z, a t-ary point-set predicate with codomain Z is a collection $\Gamma = \{\Gamma_P \colon P \in \mathcal{P}\}$, where $\Gamma_P \colon P \mapsto Z$.
- Example: ternary predicate $\Delta = \{\Delta_P : P \in \mathcal{P}\}$ with codomain $\{-, +\}$.

- ullet Let ${\mathcal P}$ be the set of all finite point sets in the plane in general position.
- For $t \in \mathbb{N}$ and a finite set Z, a t-ary point-set predicate with codomain Z is a collection $\Gamma = \{\Gamma_P \colon P \in \mathcal{P}\}$, where $\Gamma_P \colon P \mapsto Z$.
- Example: ternary predicate $\Delta = \{\Delta_P : P \in \mathcal{P}\}$ with codomain $\{-, +\}$.
- We say that Γ encodes the order types if whenever there is a bijection $f: P \to Q$ such that $\Gamma_P(p_1, \ldots, p_t) = \Gamma_Q(f(p_1), \ldots, f(p_t))$ for every $(p_1, \ldots, p_t) \in (P)_t$, then P and Q have the same order type via f.

- ullet Let ${\mathcal P}$ be the set of all finite point sets in the plane in general position.
- For $t \in \mathbb{N}$ and a finite set Z, a t-ary point-set predicate with codomain Z is a collection $\Gamma = \{\Gamma_P \colon P \in \mathcal{P}\}$, where $\Gamma_P \colon P \mapsto Z$.
- Example: ternary predicate $\Delta = \{\Delta_P : P \in \mathcal{P}\}$ with codomain $\{-, +\}$.
- We say that Γ encodes the order types if whenever there is a bijection $f: P \to Q$ such that $\Gamma_P(p_1, \ldots, p_t) = \Gamma_Q(f(p_1), \ldots, f(p_t))$ for every $(p_1, \ldots, p_t) \in (P)_t$, then P and Q have the same order type via f.
- For $n \in \mathbb{N}$, there are $2^{\Theta(n^3)}$ ternary functions $f: ([n])_3 \to \{-, +\}$, but only $2^{\Theta(n \log n)}$ order types of point sets of size n.

- ullet Let ${\mathcal P}$ be the set of all finite point sets in the plane in general position.
- For $t \in \mathbb{N}$ and a finite set Z, a t-ary point-set predicate with codomain Z is a collection $\Gamma = \{\Gamma_P \colon P \in \mathcal{P}\}$, where $\Gamma_P \colon P \mapsto Z$.
- Example: ternary predicate $\Delta = \{\Delta_P : P \in \mathcal{P}\}$ with codomain $\{-, +\}$.
- We say that Γ encodes the order types if whenever there is a bijection $f: P \to Q$ such that $\Gamma_P(p_1, \ldots, p_t) = \Gamma_Q(f(p_1), \ldots, f(p_t))$ for every $(p_1, \ldots, p_t) \in (P)_t$, then P and Q have the same order type via f.
- For $n \in \mathbb{N}$, there are $2^{\Theta(n^3)}$ ternary functions $f: ([n])_3 \to \{-, +\}$, but only $2^{\Theta(n \log n)}$ order types of point sets of size n.
- ullet Is the encoding by Δ effective? Is it possible to use a binary predicate?

• A binary predicate that encodes the order types exists. (Felsner, 1997).

- A binary predicate that encodes the order types exists. (Felsner, 1997).
- ullet However, unlike Δ , this predicate does not behave locally.

- A binary predicate that encodes the order types exists. (Felsner, 1997).
- However, unlike Δ , this predicate does not behave locally.
- Is there a binary predicate that encodes order types and behaves locally?

- A binary predicate that encodes the order types exists. (Felsner, 1997).
- However, unlike Δ , this predicate does not behave locally.
- Is there a binary predicate that encodes order types and behaves locally?
- A binary predicate Γ is locally consistent on $P \in \mathcal{P}$ if, for any distinct subsets $\{a_1, a_2, a_3\}$ and $\{b_1, b_2, b_3\}$ of P, having $\Gamma_P(a_i, a_j) = \Gamma_P(b_i, b_j)$ for every $(i, j) \in ([3])_2$ implies $\Delta_P(a_1, a_2, a_3) = \Delta_P(b_1, b_2, b_3)$.

- A binary predicate that encodes the order types exists. (Felsner, 1997).
- However, unlike Δ , this predicate does not behave locally.
- Is there a binary predicate that encodes order types and behaves locally?
- A binary predicate Γ is locally consistent on $P \in \mathcal{P}$ if, for any distinct subsets $\{a_1, a_2, a_3\}$ and $\{b_1, b_2, b_3\}$ of P, having $\Gamma_P(a_i, a_j) = \Gamma_P(b_i, b_j)$ for every $(i, j) \in ([3])_2$ implies $\Delta_P(a_1, a_2, a_3) = \Delta_P(b_1, b_2, b_3)$.

Theorem 2

For every finite set Z, there is a point set P = P(Z) such that no binary predicate with codomain Z is locally consistent on P.

- A binary predicate that encodes the order types exists. (Felsner, 1997).
- However, unlike Δ , this predicate does not behave locally.
- Is there a binary predicate that encodes order types and behaves locally?
- A binary predicate Γ is locally consistent on $P \in \mathcal{P}$ if, for any distinct subsets $\{a_1, a_2, a_3\}$ and $\{b_1, b_2, b_3\}$ of P, having $\Gamma_P(a_i, a_j) = \Gamma_P(b_i, b_j)$ for every $(i, j) \in ([3])_2$ implies $\Delta_P(a_1, a_2, a_3) = \Delta_P(b_1, b_2, b_3)$.

Theorem 2

For every finite set Z, there is a point set P = P(Z) such that no binary predicate with codomain Z is locally consistent on P.

• The proof is based on Theorem 1.

- A binary predicate that encodes the order types exists. (Felsner, 1997).
- However, unlike Δ , this predicate does not behave locally.
- Is there a binary predicate that encodes order types and behaves locally?
- A binary predicate Γ is locally consistent on $P \in \mathcal{P}$ if, for any distinct subsets $\{a_1, a_2, a_3\}$ and $\{b_1, b_2, b_3\}$ of P, having $\Gamma_P(a_i, a_j) = \Gamma_P(b_i, b_j)$ for every $(i, j) \in ([3])_2$ implies $\Delta_P(a_1, a_2, a_3) = \Delta_P(b_1, b_2, b_3)$.

Theorem 2

For every finite set Z, there is a point set P = P(Z) such that no binary predicate with codomain Z is locally consistent on P.

• The proof is based on Theorem 1.

• What can we encode with locally consistent predicates?

- What can we encode with locally consistent predicates?
- Codomains of size only 2 are already sufficient to encode exponentially many order types of point sets of size n for every $n \in \mathbb{N}$.

- What can we encode with locally consistent predicates?
- Codomains of size only 2 are already sufficient to encode exponentially many order types of point sets of size n for every $n \in \mathbb{N}$.

Proposition 1

The order types of wheel sets can be encoded with a binary predicate Φ with codomain $\{-,+\}$ such that Φ is locally consistent on all wheel sets.

- What can we encode with locally consistent predicates?
- Codomains of size only 2 are already sufficient to encode exponentially many order types of point sets of size n for every $n \in \mathbb{N}$.

Proposition 1

The order types of wheel sets can be encoded with a binary predicate Φ with codomain $\{-,+\}$ such that Φ is locally consistent on all wheel sets.

• Let h(k) be the largest integer such that there is a binary predicate with codomain of size k that is locally consistent on all point sets of size h(k) and that encodes their order types.

- Let h(k) be the largest integer such that there is a binary predicate with codomain of size k that is locally consistent on all point sets of size h(k) and that encodes their order types.
- By Theorem 2, h(k) is finite for every $k \in \mathbb{N}$.

- Let h(k) be the largest integer such that there is a binary predicate with codomain of size k that is locally consistent on all point sets of size h(k) and that encodes their order types.
- By Theorem 2, h(k) is finite for every $k \in \mathbb{N}$.
- We show a superlinear lower bound on h(k).

- Let h(k) be the largest integer such that there is a binary predicate with codomain of size k that is locally consistent on all point sets of size h(k) and that encodes their order types.
- By Theorem 2, h(k) is finite for every $k \in \mathbb{N}$.
- We show a superlinear lower bound on h(k).

Proposition 2

We have $h(k) \ge c \cdot k^{3/2}$ for some constant c > 0.

- Let h(k) be the largest integer such that there is a binary predicate with codomain of size k that is locally consistent on all point sets of size h(k) and that encodes their order types.
- By Theorem 2, h(k) is finite for every $k \in \mathbb{N}$.
- We show a superlinear lower bound on h(k).

Proposition 2

We have $h(k) \ge c \cdot k^{3/2}$ for some constant c > 0.

• The proof is based on Lovász's Local Lemma and the fact that there are only $2^{O(k \log k)}$ order types of point sets of size k.

- Let h(k) be the largest integer such that there is a binary predicate with codomain of size k that is locally consistent on all point sets of size h(k) and that encodes their order types.
- By Theorem 2, h(k) is finite for every $k \in \mathbb{N}$.
- We show a superlinear lower bound on h(k).

Proposition 2

We have $h(k) \ge c \cdot k^{3/2}$ for some constant c > 0.

• The proof is based on Lovász's Local Lemma and the fact that there are only $2^{O(k \log k)}$ order types of point sets of size k.

Question 1

What is the growth rate of h(k)?

• Recall that all point sets are ordered (k, 1)-Ramsey, but not ordered (k, 2)-Ramsey. Ordered (k, p)-Ramsey sets for $p \ge 3$ are caps and cups.

- Recall that all point sets are ordered (k, 1)-Ramsey, but not ordered (k, 2)-Ramsey. Ordered (k, p)-Ramsey sets for $p \ge 3$ are caps and cups.
- Signatures can be defined also for generalized point sets, where lines are replaced by pseudolines. We can thus introduce ordered (k, p)-Ramsey generalized point sets.

- Recall that all point sets are ordered (k, 1)-Ramsey, but not ordered (k, 2)-Ramsey. Ordered (k, p)-Ramsey sets for $p \ge 3$ are caps and cups.
- Signatures can be defined also for generalized point sets, where lines are replaced by pseudolines. We can thus introduce ordered (k, p)-Ramsey generalized point sets.
- For p = 1 and $p \ge 3$, analogous results hold for generalized point sets. However, the case p = 2 is wide open.

- Recall that all point sets are ordered (k, 1)-Ramsey, but not ordered (k, 2)-Ramsey. Ordered (k, p)-Ramsey sets for $p \ge 3$ are caps and cups.
- Signatures can be defined also for generalized point sets, where lines are replaced by pseudolines. We can thus introduce ordered (k, p)-Ramsey generalized point sets.
- For p=1 and $p \ge 3$, analogous results hold for generalized point sets. However, the case p=2 is wide open.

Question 2

Is there a generalized point set that is not ordered (2,2)-Ramsey?

- Recall that all point sets are ordered (k, 1)-Ramsey, but not ordered (k, 2)-Ramsey. Ordered (k, p)-Ramsey sets for $p \ge 3$ are caps and cups.
- Signatures can be defined also for generalized point sets, where lines are replaced by pseudolines. We can thus introduce ordered (k, p)-Ramsey generalized point sets.
- For p=1 and $p\geq 3$, analogous results hold for generalized point sets. However, the case p=2 is wide open.

Question 2

Is there a generalized point set that is not ordered (2,2)-Ramsey?

 Generalized point sets correspond to ordered 3-uniform hypergraphs with 8 forbidden induced sub-hypergraphs. However, known structural results do not seem to apply here.

- Recall that all point sets are ordered (k, 1)-Ramsey, but not ordered (k, 2)-Ramsey. Ordered (k, p)-Ramsey sets for $p \ge 3$ are caps and cups.
- Signatures can be defined also for generalized point sets, where lines are replaced by pseudolines. We can thus introduce ordered (k, p)-Ramsey generalized point sets.
- For p=1 and $p\geq 3$, analogous results hold for generalized point sets. However, the case p=2 is wide open.

Question 2

Is there a generalized point set that is not ordered (2,2)-Ramsey?

- Generalized point sets correspond to ordered 3-uniform hypergraphs with 8 forbidden induced sub-hypergraphs. However, known structural results do not seem to apply here.
- All ordered 3-uniform hypergraphs are ordered (2, 2)-Ramsey (Nešetřil and Rödl, 1983).

- Recall that all point sets are ordered (k, 1)-Ramsey, but not ordered (k, 2)-Ramsey. Ordered (k, p)-Ramsey sets for $p \ge 3$ are caps and cups.
- Signatures can be defined also for generalized point sets, where lines are replaced by pseudolines. We can thus introduce ordered (k, p)-Ramsey generalized point sets.
- For p=1 and $p\geq 3$, analogous results hold for generalized point sets. However, the case p=2 is wide open.

Question 2

Is there a generalized point set that is not ordered (2,2)-Ramsey?

- Generalized point sets correspond to ordered 3-uniform hypergraphs with 8 forbidden induced sub-hypergraphs. However, known structural results do not seem to apply here.
- All ordered 3-uniform hypergraphs are ordered (2, 2)-Ramsey (Nešetřil and Rödl, 1983).

Thank you.