Covering lattice points by subspaces and counting point-hyperplane incidences

Martin Balko, Josef Cibulka, Pavel Valtr

Charles University and Ben-Gurion University of the Negev

May 6, 2017

• For $d \in \mathbb{N}$, let S be a collection of subsets in \mathbb{R}^d and let P be a set of points from \mathbb{R}^d .

- For $d \in \mathbb{N}$, let S be a collection of subsets in \mathbb{R}^d and let P be a set of points from \mathbb{R}^d .
- We say S covers P if every point from P lies in some set from S.

- For $d \in \mathbb{N}$, let S be a collection of subsets in \mathbb{R}^d and let P be a set of points from \mathbb{R}^d .
- We say S covers P if every point from P lies in some set from S.
- For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?

- For $d \in \mathbb{N}$, let S be a collection of subsets in \mathbb{R}^d and let P be a set of points from \mathbb{R}^d .
- We say S covers P if every point from P lies in some set from S.
- For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?

- For $d \in \mathbb{N}$, let S be a collection of subsets in \mathbb{R}^d and let P be a set of points from \mathbb{R}^d .
- We say S covers P if every point from P lies in some set from S.
- For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?

- For $d \in \mathbb{N}$, let S be a collection of subsets in \mathbb{R}^d and let P be a set of points from \mathbb{R}^d .
- We say S covers P if every point from P lies in some set from S.
- For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?

- For $d \in \mathbb{N}$, let S be a collection of subsets in \mathbb{R}^d and let P be a set of points from \mathbb{R}^d .
- We say S covers P if every point from P lies in some set from S.
- For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?

- For $d \in \mathbb{N}$, let S be a collection of subsets in \mathbb{R}^d and let P be a set of points from \mathbb{R}^d .
- We say S covers P if every point from P lies in some set from S.
- For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?

- For $d \in \mathbb{N}$, let S be a collection of subsets in \mathbb{R}^d and let P be a set of points from \mathbb{R}^d .
- We say S covers P if every point from P lies in some set from S.
- For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?

- For $d \in \mathbb{N}$, let S be a collection of subsets in \mathbb{R}^d and let P be a set of points from \mathbb{R}^d .
- We say S covers P if every point from P lies in some set from S.
- For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?

• Let k be an integer with $1 \le k \le d - 1$.

• Let k be an integer with $1 \le k \le d - 1$.

Problem 1 (Brass, Moser, Pach, 2005)

• Let k be an integer with $1 \le k \le d - 1$.

Problem 1 (Brass, Moser, Pach, 2005)

What is the minimum number of k-dimensional linear subspaces needed to cover the d-dimensional $n \times \cdots \times n$ lattice?

• For affine subspaces the answer is $\Theta(n^{d-k})$.

• Let k be an integer with $1 \le k \le d-1$.

Problem 1 (Brass, Moser, Pach, 2005)

- For affine subspaces the answer is $\Theta(n^{d-k})$.
- Covering by linear subspaces is more difficult.

• Let k be an integer with $1 \le k \le d-1$.

Problem 1 (Brass, Moser, Pach, 2005)

- For affine subspaces the answer is $\Theta(n^{d-k})$.
- Covering by linear subspaces is more difficult.
- Bárány, Harcos, Pach, Tardos (2001) solved the problem for hyperplanes containing the origin, i.e., for k = d 1.

• Let k be an integer with $1 \le k \le d - 1$.

Problem 1 (Brass, Moser, Pach, 2005)

- For affine subspaces the answer is $\Theta(n^{d-k})$.
- Covering by linear subspaces is more difficult.
- Bárány, Harcos, Pach, Tardos (2001) solved the problem for hyperplanes containing the origin, i.e., for k = d 1.
- They showed that the answer is $\Theta(n^{d/(d-1)})$.

• Let k be an integer with $1 \le k \le d - 1$.

Problem 1 (Brass, Moser, Pach, 2005)

- For affine subspaces the answer is $\Theta(n^{d-k})$.
- Covering by linear subspaces is more difficult.
- Bárány, Harcos, Pach, Tardos (2001) solved the problem for hyperplanes containing the origin, i.e., for k = d 1.
- They showed that the answer is $\Theta(n^{d/(d-1)})$.
- Their proof works in the following more general setting.

• For linearly independent vectors $b_1, \ldots, b_d \in \mathbb{R}^d$, the *d*-dimensional lattice Λ with basis $\{b_1, \ldots, b_d\}$ is the set

$$\Lambda = \{a_1b_1 + \cdots + a_db_d \colon a_1, \ldots, a_d \in \mathbb{Z}\}.$$

• For linearly independent vectors $b_1, \ldots, b_d \in \mathbb{R}^d$, the *d*-dimensional lattice Λ with basis $\{b_1, \ldots, b_d\}$ is the set

$$\Lambda = \{a_1b_1 + \cdots + a_db_d \colon a_1, \ldots, a_d \in \mathbb{Z}\}.$$

• For linearly independent vectors $b_1, \ldots, b_d \in \mathbb{R}^d$, the *d*-dimensional lattice Λ with basis $\{b_1, \ldots, b_d\}$ is the set

$$\Lambda = \{a_1b_1 + \cdots + a_db_d \colon a_1, \ldots, a_d \in \mathbb{Z}\}.$$

• For linearly independent vectors $b_1, \ldots, b_d \in \mathbb{R}^d$, the *d*-dimensional lattice Λ with basis $\{b_1, \ldots, b_d\}$ is the set

$$\Lambda = \{a_1b_1 + \cdots + a_db_d \colon a_1, \ldots, a_d \in \mathbb{Z}\}.$$

• A convex body K is symmetric about 0 if K = -K.

• For linearly independent vectors $b_1, \ldots, b_d \in \mathbb{R}^d$, the *d*-dimensional lattice Λ with basis $\{b_1, \ldots, b_d\}$ is the set

$$\Lambda = \{a_1b_1 + \cdots + a_db_d \colon a_1, \ldots, a_d \in \mathbb{Z}\}.$$

• A convex body K is symmetric about 0 if K = -K.

• For linearly independent vectors $b_1, \ldots, b_d \in \mathbb{R}^d$, the d-dimensional lattice Λ with basis $\{b_1, \ldots, b_d\}$ is the set

$$\Lambda = \{a_1b_1 + \cdots + a_db_d \colon a_1, \ldots, a_d \in \mathbb{Z}\}.$$

• A convex body K is symmetric about 0 if K = -K.

• Let \mathcal{L}^d be the set of d-dimensional lattices and \mathcal{K}^d be the set of d-dimensional compact convex bodies in \mathbb{R}^d that are symmetric about 0.

Generalized problem 1

Generalized problem 1

For $\Lambda \in \mathcal{L}^d$ and $K \in \mathcal{K}^d$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

• How to measure $|\Lambda \cap K|$?

Generalized problem 1

- How to measure $|\Lambda \cap K|$?
- For i = 1, ..., d, the *i*th successive minimum of Λ and K is

$$\lambda_i = \lambda_i(\Lambda, K) = \inf\{\lambda \in \mathbb{R} : \dim(\Lambda \cap (\lambda \cdot K)) \geq i\}.$$

Generalized problem 1

- How to measure $|\Lambda \cap K|$?
- For i = 1, ..., d, the *i*th successive minimum of Λ and K is

$$\lambda_i = \lambda_i(\Lambda, K) = \inf\{\lambda \in \mathbb{R} : \dim(\Lambda \cap (\lambda \cdot K)) \ge i\}.$$

Generalized problem 1

- How to measure $|\Lambda \cap K|$?
- For i = 1, ..., d, the *i*th successive minimum of Λ and K is

$$\lambda_i = \lambda_i(\Lambda, K) = \inf\{\lambda \in \mathbb{R} : \dim(\Lambda \cap (\lambda \cdot K)) \ge i\}.$$

Generalized problem 1

- How to measure $|\Lambda \cap K|$?
- For i = 1, ..., d, the *i*th successive minimum of Λ and K is

$$\lambda_i = \lambda_i(\Lambda, K) = \inf\{\lambda \in \mathbb{R} : \dim(\Lambda \cap (\lambda \cdot K)) \ge i\}.$$

Generalized problem 1

- How to measure $|\Lambda \cap K|$?
- For i = 1, ..., d, the *i*th successive minimum of Λ and K is

$$\lambda_i = \lambda_i(\Lambda, K) = \inf\{\lambda \in \mathbb{R} : \dim(\Lambda \cap (\lambda \cdot K)) \geq i\}.$$

Generalized problem 1

- How to measure $|\Lambda \cap K|$?
- For i = 1, ..., d, the *i*th successive minimum of Λ and K is

$$\lambda_i = \lambda_i(\Lambda, K) = \inf\{\lambda \in \mathbb{R} : \dim(\Lambda \cap (\lambda \cdot K)) \geq i\}.$$

Successive minima

Generalized problem 1

For $\Lambda \in \mathcal{L}^d$ and $K \in \mathcal{K}^d$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

- How to measure $|\Lambda \cap K|$?
- For i = 1, ..., d, the *i*th successive minimum of Λ and K is

$$\lambda_i = \lambda_i(\Lambda, K) = \inf\{\lambda \in \mathbb{R} : \dim(\Lambda \cap (\lambda \cdot K)) \geq i\}.$$

Successive minima

Generalized problem 1

For $\Lambda \in \mathcal{L}^d$ and $K \in \mathcal{K}^d$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

- How to measure $|\Lambda \cap K|$?
- For i = 1, ..., d, the *i*th successive minimum of Λ and K is

$$\lambda_i = \lambda_i(\Lambda, K) = \inf\{\lambda \in \mathbb{R} : \dim(\Lambda \cap (\lambda \cdot K)) \ge i\}.$$

Successive minima

Generalized problem 1

For $\Lambda \in \mathcal{L}^d$ and $K \in \mathcal{K}^d$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

- How to measure $|\Lambda \cap K|$?
- For i = 1, ..., d, the *i*th successive minimum of Λ and K is

$$\lambda_i = \lambda_i(\Lambda, K) = \inf\{\lambda \in \mathbb{R} : \dim(\Lambda \cap (\lambda \cdot K)) \ge i\}.$$

• The successive minima are achieved and $0 < \lambda_1 \leq \cdots \leq \lambda_d$.

Theorem (Bárány, Harcos, Pach, Tardos, 2001)

For $\Lambda \in \mathcal{L}^d$ and $K \in \mathcal{K}^d$ with $\lambda_d \leq 1$, the set $\Lambda \cap K$ can be covered with at most

$$O\left(\min_{1\leq j\leq d-1}(\lambda_j\cdots\lambda_d)^{-1/(d-j)}\right)$$

Theorem (Bárány, Harcos, Pach, Tardos, 2001)

For $\Lambda \in \mathcal{L}^d$ and $K \in \mathcal{K}^d$ with $\lambda_d \leq 1$, the set $\Lambda \cap K$ can be covered with at most

$$O\left(\min_{1\leq j\leq d-1}(\lambda_j\cdots\lambda_d)^{-1/(d-j)}\right)$$

(d-1)-dimensional linear subspaces and this is tight if λ_d is not close to 1.

• For $\Lambda = \mathbb{Z}^d$ and $K = [-n, n]^d$, we have $\lambda_1 = \cdots = \lambda_d = 1/n$ and thus j = 1, which gives the $\Theta(n^{d/(d-1)})$ bound.

Theorem (Bárány, Harcos, Pach, Tardos, 2001)

For $\Lambda \in \mathcal{L}^d$ and $K \in \mathcal{K}^d$ with $\lambda_d \leq 1$, the set $\Lambda \cap K$ can be covered with at most

$$O\left(\min_{1\leq j\leq d-1}(\lambda_j\cdots\lambda_d)^{-1/(d-j)}\right)$$

- For $\Lambda = \mathbb{Z}^d$ and $K = [-n, n]^d$, we have $\lambda_1 = \cdots = \lambda_d = 1/n$ and thus j = 1, which gives the $\Theta(n^{d/(d-1)})$ bound.
- The assumption $\lambda_d \leq 1$ is necessary:

Theorem (Bárány, Harcos, Pach, Tardos, 2001)

For $\Lambda \in \mathcal{L}^d$ and $K \in \mathcal{K}^d$ with $\lambda_d \leq 1$, the set $\Lambda \cap K$ can be covered with at most

$$O\left(\min_{1\leq j\leq d-1}(\lambda_j\cdots\lambda_d)^{-1/(d-j)}
ight)$$

- For $\Lambda = \mathbb{Z}^d$ and $K = [-n, n]^d$, we have $\lambda_1 = \cdots = \lambda_d = 1/n$ and thus j = 1, which gives the $\Theta(n^{d/(d-1)})$ bound.
- The assumption $\lambda_d \leq 1$ is necessary:

Theorem (Bárány, Harcos, Pach, Tardos, 2001)

For $\Lambda \in \mathcal{L}^d$ and $K \in \mathcal{K}^d$ with $\lambda_d \leq 1$, the set $\Lambda \cap K$ can be covered with at most

$$O\left(\min_{1\leq j\leq d-1}(\lambda_j\cdots\lambda_d)^{-1/(d-j)}\right)$$

- For $\Lambda = \mathbb{Z}^d$ and $K = [-n, n]^d$, we have $\lambda_1 = \cdots = \lambda_d = 1/n$ and thus j = 1, which gives the $\Theta(n^{d/(d-1)})$ bound.
- The assumption $\lambda_d \leq 1$ is necessary:

$$K = \varepsilon, \lambda_2 = \frac{3}{2} \quad \min_{1 \leq j \leq d-1} (\lambda_j \cdots \lambda_d)^{-1/(d-j)} = \frac{1}{\lambda_1 \lambda_2} = \frac{2}{3\varepsilon}$$

Theorem (Bárány, Harcos, Pach, Tardos, 2001)

For $\Lambda \in \mathcal{L}^d$ and $K \in \mathcal{K}^d$ with $\lambda_d \leq 1$, the set $\Lambda \cap K$ can be covered with at most

$$O\left(\min_{1\leq j\leq d-1}(\lambda_j\cdots\lambda_d)^{-1/(d-j)}\right)$$

- For $\Lambda = \mathbb{Z}^d$ and $K = [-n, n]^d$, we have $\lambda_1 = \cdots = \lambda_d = 1/n$ and thus j = 1, which gives the $\Theta(n^{d/(d-1)})$ bound.
- The assumption $\lambda_d \leq 1$ is necessary:

$$K = \varepsilon, \lambda_2 = \frac{3}{2} \quad \min_{1 \leq j \leq d-1} (\lambda_j \cdots \lambda_d)^{-1/(d-j)} = \frac{1}{\lambda_1 \lambda_2} = \frac{2}{3\varepsilon}$$

Theorem (Bárány, Harcos, Pach, Tardos, 2001)

For $\Lambda \in \mathcal{L}^d$ and $K \in \mathcal{K}^d$ with $\lambda_d \leq 1$, the set $\Lambda \cap K$ can be covered with at most

$$O\left(\min_{1\leq j\leq d-1}(\lambda_j\cdots\lambda_d)^{-1/(d-j)}\right)$$

(d-1)-dimensional linear subspaces and this is tight if λ_d is not close to 1.

- For $\Lambda = \mathbb{Z}^d$ and $K = [-n, n]^d$, we have $\lambda_1 = \cdots = \lambda_d = 1/n$ and thus j = 1, which gives the $\Theta(n^{d/(d-1)})$ bound.
- The assumption $\lambda_d \leq 1$ is necessary:

$$K = \varepsilon, \ \lambda_2 = \frac{3}{2} \quad \min_{1 \leq j \leq d-1} (\lambda_j \cdots \lambda_d)^{-1/(d-j)} = \frac{1}{\lambda_1 \lambda_2} = \frac{2}{3\varepsilon}$$

• We consider Generalized problem 1 for general k.

Theorem 1

For k with $1 \leq k \leq d-1$, $\Lambda \in \mathcal{L}^d$, and $K \in \mathcal{K}^d$ with $\lambda_d \leq 1$, we can cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where

$$\alpha = \min_{1 \le j \le k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}.$$

Theorem 1

For k with $1 \le k \le d-1$, $\Lambda \in \mathcal{L}^d$, and $K \in \mathcal{K}^d$ with $\lambda_d \le 1$, we can cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where

$$\alpha = \min_{1 \le j \le k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}.$$

• Using probabilistic method, we can also show the following lower bound.

Theorem 1

For k with $1 \le k \le d-1$, $\Lambda \in \mathcal{L}^d$, and $K \in \mathcal{K}^d$ with $\lambda_d \le 1$, we can cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where

$$\alpha = \min_{1 \le j \le k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}.$$

• Using probabilistic method, we can also show the following lower bound.

Theorem 2

For k with $1 \le k \le d-1$, $\Lambda \in \mathcal{L}^d$, $K \in \mathcal{K}^d$ with $\lambda_d \le 1$, and $\varepsilon \in (0,1)$, we need at least $\Omega(((1-\lambda_d)\beta)^{d-k-\varepsilon})$ k-dimensional linear subspaces to cover $\Lambda \cap K$, where

$$\beta = \min_{1 \le i \le d-1} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}.$$

Theorem 1

For k with $1 \le k \le d-1$, $\Lambda \in \mathcal{L}^d$, and $K \in \mathcal{K}^d$ with $\lambda_d \le 1$, we can cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where

$$\alpha = \min_{1 \le j \le k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}.$$

• Using probabilistic method, we can also show the following lower bound.

Theorem 2

For k with $1 \leq k \leq d-1$, $\Lambda \in \mathcal{L}^d$, $K \in \mathcal{K}^d$ with $\lambda_d \leq 1$, and $\varepsilon \in (0,1)$, we need at least $\Omega(((1-\lambda_d)\beta)^{d-k-\varepsilon})$ k-dimensional linear subspaces to cover $\Lambda \cap K$, where

$$\beta = \min_{1 \le i \le d-1} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}.$$

• The bounds are not tight. The lower bound can be improved?

• The bounds are sufficient to nearly settle Problem 1:

• The bounds are sufficient to nearly settle Problem 1:

Corollary

For k with $1 \le k \le d-1$ and $n \in \mathbb{N}$, the $n \times \cdots \times n$ lattice can be covered with $O(n^{d(d-k)/(d-1)})$ k-dimensional linear subspaces and for every $\varepsilon > 0$ we need at least $\Omega(n^{d(d-k)/(d-1)-\varepsilon})$ k-dimensional linear subspaces to cover it.

• The bounds are sufficient to nearly settle Problem 1:

Corollary

For k with $1 \le k \le d-1$ and $n \in \mathbb{N}$, the $n \times \cdots \times n$ lattice can be covered with $O(n^{d(d-k)/(d-1)})$ k-dimensional linear subspaces and for every $\varepsilon > 0$ we need at least $\Omega(n^{d(d-k)/(d-1)-\varepsilon})$ k-dimensional linear subspaces to cover it.

• We also consider the problem of covering $\Lambda \cap K$ with affine subspaces.

• The bounds are sufficient to nearly settle Problem 1:

Corollary

For k with $1 \le k \le d-1$ and $n \in \mathbb{N}$, the $n \times \cdots \times n$ lattice can be covered with $O(n^{d(d-k)/(d-1)})$ k-dimensional linear subspaces and for every $\varepsilon > 0$ we need at least $\Omega(n^{d(d-k)/(d-1)-\varepsilon})$ k-dimensional linear subspaces to cover it.

• We also consider the problem of covering $\Lambda \cap K$ with affine subspaces.

Theorem 3

For k with $1 \le k \le d-1$, $\Lambda \in \mathcal{L}^d$, and $K \in \mathcal{K}^d$ with $\lambda_d \le 1$, the set $\Lambda \cap K$ can be covered with

$$O((\lambda_{k+1}\cdots\lambda_d)^{-1})$$

k-dimensional affine subspaces and this is tight.

• We want to cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where $\alpha = \min_{1 \leq j \leq k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}$.

- We want to cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where $\alpha = \min_{1 \leq j \leq k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}$.
- We show the result for K being the unit ball B^d . The result for general $K \in \mathcal{K}^d$ then follows by John's Lemma.

- We want to cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where $\alpha = \min_{1 \leq j \leq k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}$.
- We show the result for K being the unit ball B^d . The result for general $K \in \mathcal{K}^d$ then follows by John's Lemma.
- Using Second Minkowski's Theorem, we show that $O((\lambda_k \cdots \lambda_d)^{-1})$ k-dimensional linear subspaces are sufficient (i.e., prove the case j = k).

- We want to cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where $\alpha = \min_{1 \leq j \leq k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}$.
- We show the result for K being the unit ball B^d . The result for general $K \in \mathcal{K}^d$ then follows by John's Lemma.
- Using Second Minkowski's Theorem, we show that $O((\lambda_k \cdots \lambda_d)^{-1})$ k-dimensional linear subspaces are sufficient (i.e., prove the case j = k).
- Then we proceed by induction on d k = 1, ..., d 1.

- We want to cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where $\alpha = \min_{1 \le j \le k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}$.
- We show the result for K being the unit ball B^d . The result for general $K \in \mathcal{K}^d$ then follows by John's Lemma.
- Using Second Minkowski's Theorem, we show that $O((\lambda_k \cdots \lambda_d)^{-1})$ k-dimensional linear subspaces are sufficient (i.e., prove the case j = k).
- Then we proceed by induction on d k = 1, ..., d 1.

- We want to cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where $\alpha = \min_{1 \leq j \leq k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}$.
- We show the result for K being the unit ball B^d . The result for general $K \in K^d$ then follows by John's Lemma.
- Using Second Minkowski's Theorem, we show that $O((\lambda_k \cdots \lambda_d)^{-1})$ k-dimensional linear subspaces are sufficient (i.e., prove the case j = k).
- Then we proceed by induction on d k = 1, ..., d 1.

- We want to cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where $\alpha = \min_{1 \leq j \leq k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}$.
- We show the result for K being the unit ball B^d . The result for general $K \in \mathcal{K}^d$ then follows by John's Lemma.
- Using Second Minkowski's Theorem, we show that $O((\lambda_k \cdots \lambda_d)^{-1})$ k-dimensional linear subspaces are sufficient (i.e., prove the case j = k).
- Then we proceed by induction on d k = 1, ..., d 1.

- We want to cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where $\alpha = \min_{1 \le j \le k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}$.
- We show the result for K being the unit ball B^d . The result for general $K \in \mathcal{K}^d$ then follows by John's Lemma.
- Using Second Minkowski's Theorem, we show that $O((\lambda_k \cdots \lambda_d)^{-1})$ k-dimensional linear subspaces are sufficient (i.e., prove the case j = k).
- Then we proceed by induction on d k = 1, ..., d 1.

- We want to cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where $\alpha = \min_{1 \leq j \leq k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}$.
- We show the result for K being the unit ball B^d . The result for general $K \in K^d$ then follows by John's Lemma.
- Using Second Minkowski's Theorem, we show that $O((\lambda_k \cdots \lambda_d)^{-1})$ k-dimensional linear subspaces are sufficient (i.e., prove the case j = k).
- Then we proceed by induction on d k = 1, ..., d 1.

• We use the fact that the larger ||z|| is, the sparser $(\Lambda \cap H(z)) \cap B^d$ is.

- We want to cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where $\alpha = \min_{1 \leq j \leq k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}$.
- We show the result for K being the unit ball B^d . The result for general $K \in \mathcal{K}^d$ then follows by John's Lemma.
- Using Second Minkowski's Theorem, we show that $O((\lambda_k \cdots \lambda_d)^{-1})$ k-dimensional linear subspaces are sufficient (i.e., prove the case j = k).
- Then we proceed by induction on d k = 1, ..., d 1.

• We use the fact that the larger ||z|| is, the sparser $(\Lambda \cap H(z)) \cap B^d$ is.

- We want to cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where $\alpha = \min_{1 \leq j \leq k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}$.
- We show the result for K being the unit ball B^d . The result for general $K \in K^d$ then follows by John's Lemma.
- Using Second Minkowski's Theorem, we show that $O((\lambda_k \cdots \lambda_d)^{-1})$ k-dimensional linear subspaces are sufficient (i.e., prove the case j = k).
- Then we proceed by induction on d k = 1, ..., d 1.

• We use the fact that the larger ||z|| is, the sparser $(\Lambda \cap H(z)) \cap B^d$ is.

Application: bounds for point-hyperplane incidences

Application: bounds for point-hyperplane incidences

• An incidence between an *n*-point set $P \subseteq \mathbb{R}^d$ and a set of *m* hyperplanes \mathcal{H} in \mathbb{R}^d is a pair (p, H) such that $p \in P$, $H \in \mathcal{H}$, and $p \in H$.

Application: bounds for point-hyperplane incidences

- An incidence between an *n*-point set $P \subseteq \mathbb{R}^d$ and a set of *m* hyperplanes \mathcal{H} in \mathbb{R}^d is a pair (p, H) such that $p \in P$, $H \in \mathcal{H}$, and $p \in H$.
- What is the maximum number of incidences between P and \mathcal{H} in \mathbb{R}^d ?

- An incidence between an *n*-point set $P \subseteq \mathbb{R}^d$ and a set of *m* hyperplanes \mathcal{H} in \mathbb{R}^d is a pair (p, H) such that $p \in P$, $H \in \mathcal{H}$, and $p \in H$.
- What is the maximum number of incidences between P and \mathcal{H} in \mathbb{R}^d ?

- An incidence between an *n*-point set $P \subseteq \mathbb{R}^d$ and a set of *m* hyperplanes \mathcal{H} in \mathbb{R}^d is a pair (p, H) such that $p \in P$, $H \in \mathcal{H}$, and $p \in H$.
- What is the maximum number of incidences between P and \mathcal{H} in \mathbb{R}^d ?

• In the plane, the Szemerédi-Trotter Theorem says that it is at most $O((mn)^{2/3} + m + n)$ for all P and \mathcal{H} . Moreover, this is tight.

- An incidence between an *n*-point set $P \subseteq \mathbb{R}^d$ and a set of *m* hyperplanes \mathcal{H} in \mathbb{R}^d is a pair (p, H) such that $p \in P$, $H \in \mathcal{H}$, and $p \in H$.
- What is the maximum number of incidences between P and \mathcal{H} in \mathbb{R}^d ?

- In the plane, the Szemerédi-Trotter Theorem says that it is at most $O((mn)^{2/3} + m + n)$ for all P and \mathcal{H} . Moreover, this is tight.
- For $d \ge 3$ it is trivially at most mn

- An incidence between an *n*-point set $P \subseteq \mathbb{R}^d$ and a set of *m* hyperplanes \mathcal{H} in \mathbb{R}^d is a pair (p, H) such that $p \in P$, $H \in \mathcal{H}$, and $p \in H$.
- What is the maximum number of incidences between P and \mathcal{H} in \mathbb{R}^d ?

- In the plane, the Szemerédi-Trotter Theorem says that it is at most $O((mn)^{2/3} + m + n)$ for all P and \mathcal{H} . Moreover, this is tight.
- For $d \ge 3$ it is trivially at most mn and this is tight!

- An incidence between an *n*-point set $P \subseteq \mathbb{R}^d$ and a set of *m* hyperplanes \mathcal{H} in \mathbb{R}^d is a pair (p, H) such that $p \in P$, $H \in \mathcal{H}$, and $p \in H$.
- What is the maximum number of incidences between P and \mathcal{H} in \mathbb{R}^d ?

- In the plane, the Szemerédi-Trotter Theorem says that it is at most $O((mn)^{2/3} + m + n)$ for all P and \mathcal{H} . Moreover, this is tight.
- For $d \ge 3$ it is trivially at most mn and this is tight!

- An incidence between an *n*-point set $P \subseteq \mathbb{R}^d$ and a set of *m* hyperplanes \mathcal{H} in \mathbb{R}^d is a pair (p, H) such that $p \in P$, $H \in \mathcal{H}$, and $p \in H$.
- What is the maximum number of incidences between P and \mathcal{H} in \mathbb{R}^d ?

- In the plane, the Szemerédi-Trotter Theorem says that it is at most $O((mn)^{2/3} + m + n)$ for all P and \mathcal{H} . Moreover, this is tight.
- For $d \ge 3$ it is trivially at most mn and this is tight!
- To avoid this, we forbid $K_{r,r}$ for some fixed r in the incidence graph.

- An incidence between an *n*-point set $P \subseteq \mathbb{R}^d$ and a set of *m* hyperplanes \mathcal{H} in \mathbb{R}^d is a pair (p, H) such that $p \in P$, $H \in \mathcal{H}$, and $p \in H$.
- What is the maximum number of incidences between P and \mathcal{H} in \mathbb{R}^d ?

- In the plane, the Szemerédi-Trotter Theorem says that it is at most $O((mn)^{2/3} + m + n)$ for all P and \mathcal{H} . Moreover, this is tight.
- For $d \ge 3$ it is trivially at most mn and this is tight!
- To avoid this, we forbid $K_{r,r}$ for some fixed r in the incidence graph.
- Then the maximum number of incidences is at most $O\left((mn)^{1-1/(d+1)} + m + n\right)$ (Chazelle, 1993).

Our results – counting point-hyperplane incidences

Our results – counting point-hyperplane incidences

• There is no matching lower bound.

Our results – counting point-hyperplane incidences

• There is no matching lower bound.

Theorem (Brass and Knauer, 2003)

For $d \geq 3$, $\varepsilon > 0$ there is an r such that for all n and m there is a set P of n points in \mathbb{R}^d and a set \mathcal{H} of m hyperplanes in \mathbb{R}^d with no $K_{r,r}$ in the incidence graph and with the number of incidences at least

$$\Omega\left((mn)^{1-2/(d+3)-\varepsilon}\right)$$
 if d is odd and $d>3$, $\Omega\left((mn)^{1-2(d+1)/(d+2)^2-\varepsilon}\right)$ if d is even, $\Omega\left((mn)^{7/10}\right)$ if $d=3$.

Our results - counting point-hyperplane incidences

• There is no matching lower bound.

Theorem (Brass and Knauer, 2003)

For $d \geq 3$, $\varepsilon > 0$ there is an r such that for all n and m there is a set P of n points in \mathbb{R}^d and a set \mathcal{H} of m hyperplanes in \mathbb{R}^d with no $K_{r,r}$ in the incidence graph and with the number of incidences at least

$$\Omega\left((mn)^{1-2/(d+3)-arepsilon}
ight)$$
 if d is odd and $d>3$, $\Omega\left((mn)^{1-2(d+1)/(d+2)^2-arepsilon}
ight)$ if d is even, $\Omega\left((mn)^{7/10}
ight)$ if $d=3$.

• For $d \ge 4$, we improve these bounds to

$$\Omega\left((mn)^{1-(2d+3)/((d+2)(d+3))-\varepsilon}\right) \qquad \text{if d is odd,}$$

$$\Omega\left((mn)^{1-(2d^2+d-2)/((d+2)(d^2+2d-2))-\varepsilon}\right) \qquad \text{if d is even.}$$

• The gap in the exponents is of order $\Theta(1/d)$ and the improvement is of order $\Theta(1/d^2)$.

- The gap in the exponents is of order $\Theta(1/d)$ and the improvement is of order $\Theta(1/d^2)$.
- It is the first improvement in the last 13 years.

- The gap in the exponents is of order $\Theta(1/d)$ and the improvement is of order $\Theta(1/d^2)$.
- It is the first improvement in the last 13 years.
- It provides the best known lower bound for so-called Semialgebraic Zarankiewicz's problem.

- The gap in the exponents is of order $\Theta(1/d)$ and the improvement is of order $\Theta(1/d^2)$.
- It is the first improvement in the last 13 years.
- It provides the best known lower bound for so-called Semialgebraic Zarankiewicz's problem.
- Open problems:

- The gap in the exponents is of order $\Theta(1/d)$ and the improvement is of order $\Theta(1/d^2)$.
- It is the first improvement in the last 13 years.
- It provides the best known lower bound for so-called Semialgebraic Zarankiewicz's problem.
- Open problems:
 - Close the gap between estimates from Theorem 1 and Theorem 2.

- The gap in the exponents is of order $\Theta(1/d)$ and the improvement is of order $\Theta(1/d^2)$.
- It is the first improvement in the last 13 years.
- It provides the best known lower bound for so-called Semialgebraic Zarankiewicz's problem.
- Open problems:
 - Close the gap between estimates from Theorem 1 and Theorem 2.
 - For 1 < k < d-1, some fixed $r \in \mathbb{N}$, and an arbitrarily large $n \in \mathbb{N}$, construct a set $R \subseteq \mathbb{Z}^d \cap [-n, n]^d$ of size $\Omega(n^{d(d-k)/(d-1)})$ such that no k-dimensional linear subspace contains r points from R.

- The gap in the exponents is of order $\Theta(1/d)$ and the improvement is of order $\Theta(1/d^2)$.
- It is the first improvement in the last 13 years.
- It provides the best known lower bound for so-called Semialgebraic Zarankiewicz's problem.

Open problems:

- Close the gap between estimates from Theorem 1 and Theorem 2.
- For 1 < k < d-1, some fixed $r \in \mathbb{N}$, and an arbitrarily large $n \in \mathbb{N}$, construct a set $R \subseteq \mathbb{Z}^d \cap [-n,n]^d$ of size $\Omega(n^{d(d-k)/(d-1)})$ such that no k-dimensional linear subspace contains r points from R.
- Improve the bounds for the maximum number of point-hyperplane incidences.

- The gap in the exponents is of order $\Theta(1/d)$ and the improvement is of order $\Theta(1/d^2)$.
- It is the first improvement in the last 13 years.
- It provides the best known lower bound for so-called Semialgebraic Zarankiewicz's problem.

Open problems:

- Close the gap between estimates from Theorem 1 and Theorem 2.
- For 1 < k < d-1, some fixed $r \in \mathbb{N}$, and an arbitrarily large $n \in \mathbb{N}$, construct a set $R \subseteq \mathbb{Z}^d \cap [-n, n]^d$ of size $\Omega(n^{d(d-k)/(d-1)})$ such that no k-dimensional linear subspace contains r points from R.
- Improve the bounds for the maximum number of point-hyperplane incidences.

Thank you.