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Covering by subspaces

o Let k be an integer with 1 < k < d — 1.

Problem 1 (Brass, Moser, Pach, 2005)

What is the minimum number of k-dimensional linear subspaces needed to
cover the d-dimensional n x --- x n lattice?

e For affine subspaces the answer is ©(n9*).

e Covering by linear subspaces is more difficult.

e Barany, Harcos, Pach, Tardos (2001) solved the problem for hyperplanes
containing the origin, i.e., for k = d — 1.

o They showed that the answer is ©(n9/(4=1)).
@ Their proof works in the following more general setting.
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@ A convex body K is symmetric about 0 if K = —K.
K K, K3 Ky

o Let £7 be the set of d-dimensional lattices and K¢ be the set of
d-dimensional compact convex bodies in RY that are symmetric about 0.
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Successive minima

Generalized problem 1

For A € £9 and K € K9, what is the minimum number of k-dimensional linear
subspaces needed to cover AN K?

e How to measure |AN K|?

e Fori=1,...,d, the ith successive minimum of A and K is

A= AN K) = inf{A € R: dim(AN (- K)) > i}

° ° (7% K)=1/3 °
N\ o (72, K)=1/3 g

@ The successive minima are achieved and 0 < \; < -+ < Ay
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Theorem 2
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@ The bounds are not tight. The lower bound can be improved?
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@ The bounds are sufficient to nearly settle Problem 1:

Corollary
For k W|th 1 < k § d—1and n €N, the n x --- X n lattice can be covered
with O(n9(@=kK/(d=1)) k_dimensional linear subspaces and for every ¢ > 0 we

need at Ieast Q(nd(d=k)/(d=1)=2) k_dimensional linear subspaces to cover it.

e We also consider the problem of covering A N K with affine subspaces.

Theorem 3

For kwith1<k<d—1,Ae L9 and K € K¢ with \y < 1, theset AN K
can be covered with

O((Mrr -+ Aa) ™)

k-dimensional affine subspaces and this is tight.
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e An incidence between an n-point set P C R and a set of m hyperplanes
H in R9 is a pair (p, H) such that p€ P, H € H, and p € H.

e What is the maximum number of incidences between P and H in R9?

%9,

@ In the plane, the Szemerédi—Trotter Theorem says that it is at most
O((mn)?/® + m+ n) for all P and H. Moreover, this is tight.

e For d > 3 it is trivially at most mn and this is tight!
e To avoid this, we forbid K, , for some fixed r in the incidence graph.

o Then the maximum number of incidences is at most
O ((mn)*=Y/{@+) 4 m + n) (Chazelle, 1993).
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@ There is no matching lower bound.

Theorem (Brass and Knauer, 2003)

For d > 3, £ > 0 there is an r such that for all n and m there is a set P of n
points in R and a set 7 of m hyperplanes in R? with no K., in the
incidence graph and with the number of incidences at least

Q ((mn)'=2/(9+3)=2) if d is odd and d > 3,
Q ((mn)1_2(d+1)/(d+2)2_5) if d is even,
Q ((mn)™/1°) if d =3.

e For d > 4, we improve these bounds to

Q ((mn)1—(2d+3)/((d+2)(d+3))—€) if d is odd,

Q ((mn)1—(2d2+d—2)/((d+2)(d2+2d—2))—e) if d is even.
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e It provides the best known lower bound for so-called Semialgebraic
Zarankiewicz's problem.

e Open problems:

o Close the gap between estimates from Theorem 1 and Theorem 2.

o For1 < k < d—1, some fixed r € N, and an arbitrarily large n € N,
construct a set R C Z9 N [—n, n] of size Q(n¥(d=K)/(d=1)) such
that no k-dimensional linear subspace contains r points from R.

o Improve the bounds for the maximum number of point-hyperplane
incidences.

Thank you.



