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Preliminaries

Theorem (Erdds, Szekeres, 1935)

For each k € N, every sufficiently large point set in general position (no 3 points
are collinear) in the plane contains k points in convex position.

@ A k-hole in a point set S is a convex polygon with k vertices from S
and with no points of S in its interior.

e Every set of 3 points contains a 3-hole. Also, 5 points — 4-hole and 10
points — 5-hole (Harborth, 1978).
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e Every sufficiently large point set in general position contains a 6-hole
(Gerken, 2008 and Nicolas, 2007).
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Counting k-holes

e Every sufficiently large set of points in general position contains a k-hole
for k € {3,4,5,6}.
e How many k-holes do we always have?

e Let hi(n) be the minimum number of k-holes among all sets of n points
in the plane in general position.

e The following bounds are known:
o h3(n) and hy(n) are in ©(n?).
o hi(n) =0 for every k > 7 (Horton, 1983).
o hs(n) and hg(n) are in Q(n) and O(n?).

e We focus on estimating hs(n).
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Counting 5-holes

e It is widely conjectured that hs(n) is quadratic in n.

Conjecture 1
We have hs(n) = ©(n?).

e However, even the following problem was open since the 1980's.

Conjecture 2

The function hs(n) is superlinear in n.

e Several attempts to improve the bounds:

o hs(n) < 1.0207n% + o(n?) (Bardny and Valtr, 2004),

° h5(n) > |n/10] (Barany and Fiiredi, 1987, Harborth, 1978),

o hs(n) > n/6 — O(1) (Barany and Karolyi, 2001)

o hs(n) > 3["5*] (Garcia, 2012)

o hs(n) > 3/7(n — 11)] (Aichholzer, Hackl, Vogtenhuber, 2012)
o hs(n) > n/2 — O(1) (Valtr, 2012)
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Our results |l

@ Theorem 1 is a corollary of the following structural result.

Theorem 2

Let P = AU B be an (-divided set with |A|,|B| > 5 and with neither A nor

B in convex position. Then there is a 5-hole in P with points in both A and
B (so-called (-divided 5-hole).

@ The proof is computer assisted and quite complicated.
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e An island in a point set P is a subset Q of P with P N conv(Q) = Q.

P

o (e]

o o

o Note that k-holes in an island of P are also k-holes in P.

e We proceed by induction on t = log, n.
o Base case: For t = 5°, we have n = 2 > 10 and h5(10) = 1 gives at
least ¢ - nlogg/5 n 5-holes in P for ¢ small enough.
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e We choose r = Iogé/5 n=tY5>5,

o If PN Aor P;N B isin convex position for at least half of the islands:

o Since |P;NA|,|P;N B| = r, each such island gives (;) 5-holes in P.
o In total, the number of 5-holes in P is at least

1 n r 4/5
55(5) 2c-n|og2/ n.

e If PN Aand P;N B are not in convex position for at least half of the
islands:

o Each such P; gives an (-divided 5-hole in P.
o We proceed inductively on A and B and obtain at least

hs(n/2) + hs(n/2) + n/(4r) > c - nlogy/® n

5-holes in P.
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e The case |A| =5 = |B| follows from hs(10) = 1 (Harborth, 1978).
e We reduce P to an island @ by removing extremal points until either:
o |[QNA=50r|QNB|=5,or
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@ The first case is handled by computer.
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@ The restrictions on a*-wedges imply the following result.

Proposition 1

Let @ be an /-critical set with no ¢-divided 5-hole in Q, with
|QNA[|QNB| >6,and |[QNANJconv(Q)| =2. Then |[QNB| < |QNA].

e Considering b*-wedges, we obtain the following statement.

Proposition 2

Let @ be an /-critical set with no /-divided 5-hole in @, with
|QNA[|QNB| >6,and |[QNANJconv(Q)| =2. Then |QNA| < |QNBJ.

e Without loss of generality, we assume |Q N AN dconv(Q)| = 2.

e Propositions 1 and 2 thus give |[QN B| < |QNA| < |QNB|, a
contradiction.
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Computer assisted results

e We use four computer assisted results in the proof of Theorem 2.
@ In each of them, we verify certain statement for sets of < 11 points.

Computer Lemma 1

Let P = AU B be an (-divided set with |A| =5, |B| = 6, and with A not in
convex position. Then there is an ¢-divided 5-hole in P.

@ The search is done by considering all order types of such point sets.
e We wrote two independent implementations:
o First implementation uses Aichholzer's database of order types (96
GB of data). Running time: hours.
o Second implementation does not use the database, but running
time can take up to weeks (if not run in parallel).
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Thank you.



