A superlinear lower bound on the number of 5-holes

Oswin Aichholzer, <u>Martin Balko</u>, Thomas Hackl, Jan Kynčl, Irene Parada, Manfred Scheucher, Pavel Valtr, Birgit Vogtenhuber

Charles University and Ben-Gurion University of the Negev

May 6, 2017

Theorem (Erdős, Szekeres, 1935)

Theorem (Erdős, Szekeres, 1935)

Theorem (Erdős, Szekeres, 1935)

Theorem (Erdős, Szekeres, 1935)

For each $k \in \mathbb{N}$, every sufficiently large point set in general position (no 3 points are collinear) in the plane contains k points in convex position.

• A k-hole in a point set S is a convex polygon with k vertices from S and with no points of S in its interior.

Theorem (Erdős, Szekeres, 1935)

For each $k \in \mathbb{N}$, every sufficiently large point set in general position (no 3 points are collinear) in the plane contains k points in convex position.

• A k-hole in a point set S is a convex polygon with k vertices from S and with no points of S in its interior.

Theorem (Erdős, Szekeres, 1935)

- A *k*-hole in a point set *S* is a convex polygon with *k* vertices from *S* and with no points of *S* in its interior.
- Every set of 3 points contains a 3-hole. Also, 5 points → 4-hole and 10 points → 5-hole (Harborth, 1978).

• Erdős, 1978: For every $k \in \mathbb{N}$, does every large enough point set in general position contain a k-hole?

- Erdős, 1978: For every $k \in \mathbb{N}$, does every large enough point set in general position contain a k-hole?
- No. There are arbitrarily large point sets with no 7-hole (Horton, 1983).

- Erdős, 1978: For every $k \in \mathbb{N}$, does every large enough point set in general position contain a k-hole?
- No. There are arbitrarily large point sets with no 7-hole (Horton, 1983).

- Erdős, 1978: For every $k \in \mathbb{N}$, does every large enough point set in general position contain a k-hole?
- No. There are arbitrarily large point sets with no 7-hole (Horton, 1983).

- Erdős, 1978: For every $k \in \mathbb{N}$, does every large enough point set in general position contain a k-hole?
- No. There are arbitrarily large point sets with no 7-hole (Horton, 1983).

- Erdős, 1978: For every $k \in \mathbb{N}$, does every large enough point set in general position contain a k-hole?
- No. There are arbitrarily large point sets with no 7-hole (Horton, 1983).

• Every sufficiently large point set in general position contains a 6-hole (Gerken, 2008 and Nicolás, 2007).

• Every sufficiently large set of points in general position contains a k-hole for $k \in \{3, 4, 5, 6\}$.

- Every sufficiently large set of points in general position contains a k-hole for $k \in \{3, 4, 5, 6\}$.
- How many k-holes do we always have?

- Every sufficiently large set of points in general position contains a k-hole for $k \in \{3, 4, 5, 6\}$.
- How many k-holes do we always have?
- Let $h_k(n)$ be the minimum number of k-holes among all sets of n points in the plane in general position.

- Every sufficiently large set of points in general position contains a k-hole for $k \in \{3, 4, 5, 6\}$.
- How many k-holes do we always have?
- Let $h_k(n)$ be the minimum number of k-holes among all sets of n points in the plane in general position.
- The following bounds are known:

- Every sufficiently large set of points in general position contains a k-hole for $k \in \{3, 4, 5, 6\}$.
- How many k-holes do we always have?
- Let $h_k(n)$ be the minimum number of k-holes among all sets of n points in the plane in general position.
- The following bounds are known:
 - $h_3(n)$ and $h_4(n)$ are in $\Theta(n^2)$.

- Every sufficiently large set of points in general position contains a k-hole for $k \in \{3, 4, 5, 6\}$.
- How many k-holes do we always have?
- Let $h_k(n)$ be the minimum number of k-holes among all sets of n points in the plane in general position.
- The following bounds are known:
 - $h_3(n)$ and $h_4(n)$ are in $\Theta(n^2)$.
 - $h_k(n) = 0$ for every $k \ge 7$ (Horton, 1983).

- Every sufficiently large set of points in general position contains a k-hole for $k \in \{3, 4, 5, 6\}$.
- How many k-holes do we always have?
- Let $h_k(n)$ be the minimum number of k-holes among all sets of n points in the plane in general position.
- The following bounds are known:
 - $h_3(n)$ and $h_4(n)$ are in $\Theta(n^2)$.
 - $h_k(n) = 0$ for every $k \ge 7$ (Horton, 1983).
 - $h_5(n)$ and $h_6(n)$ are in $\Omega(n)$ and $O(n^2)$.

- Every sufficiently large set of points in general position contains a k-hole for $k \in \{3, 4, 5, 6\}$.
- How many k-holes do we always have?
- Let $h_k(n)$ be the minimum number of k-holes among all sets of n points in the plane in general position.
- The following bounds are known:
 - $h_3(n)$ and $h_4(n)$ are in $\Theta(n^2)$.
 - $h_k(n) = 0$ for every $k \ge 7$ (Horton, 1983).
 - $h_5(n)$ and $h_6(n)$ are in $\Omega(n)$ and $O(n^2)$.
- We focus on estimating $h_5(n)$.

• It is widely conjectured that $h_5(n)$ is quadratic in n.

• It is widely conjectured that $h_5(n)$ is quadratic in n.

Conjecture 1

We have $h_5(n) = \Theta(n^2)$.

• It is widely conjectured that $h_5(n)$ is quadratic in n.

Conjecture 1

We have $h_5(n) = \Theta(n^2)$.

• However, even the following problem was open since the 1980's.

• It is widely conjectured that $h_5(n)$ is quadratic in n.

Conjecture 1

We have $h_5(n) = \Theta(n^2)$.

• However, even the following problem was open since the 1980's.

Conjecture 2

• It is widely conjectured that $h_5(n)$ is quadratic in n.

Conjecture 1

We have $h_5(n) = \Theta(n^2)$.

• However, even the following problem was open since the 1980's.

Conjecture 2

The function $h_5(n)$ is superlinear in n.

Several attempts to improve the bounds:

• It is widely conjectured that $h_5(n)$ is quadratic in n.

Conjecture 1

We have $h_5(n) = \Theta(n^2)$.

• However, even the following problem was open since the 1980's.

Conjecture 2

- Several attempts to improve the bounds:
 - $h_5(n) \le 1.0207 n^2 + o(n^2)$ (Bárány and Valtr, 2004),

• It is widely conjectured that $h_5(n)$ is quadratic in n.

Conjecture 1

We have $h_5(n) = \Theta(n^2)$.

• However, even the following problem was open since the 1980's.

Conjecture 2

- Several attempts to improve the bounds:
 - $h_5(n) \le 1.0207 n^2 + o(n^2)$ (Bárány and Valtr, 2004),
 - $h_5(n) \ge \lfloor n/10 \rfloor$ (Bárány and Füredi, 1987, Harborth, 1978),

• It is widely conjectured that $h_5(n)$ is quadratic in n.

Conjecture 1

We have $h_5(n) = \Theta(n^2)$.

• However, even the following problem was open since the 1980's.

Conjecture 2

- Several attempts to improve the bounds:
 - $h_5(n) \le 1.0207 n^2 + o(n^2)$ (Bárány and Valtr, 2004),
 - $h_5(n) \ge \lfloor n/10 \rfloor$ (Bárány and Füredi, 1987, Harborth, 1978),
 - $h_5(n) \ge n/6 O(1)$ (Bárány and Károlyi, 2001)

• It is widely conjectured that $h_5(n)$ is quadratic in n.

Conjecture 1

We have $h_5(n) = \Theta(n^2)$.

• However, even the following problem was open since the 1980's.

Conjecture 2

- Several attempts to improve the bounds:
 - $h_5(n) \le 1.0207 n^2 + o(n^2)$ (Bárány and Valtr, 2004),
 - $h_5(n) \ge \lfloor n/10 \rfloor$ (Bárány and Füredi, 1987, Harborth, 1978),
 - $h_5(n) \ge n/6 O(1)$ (Bárány and Károlyi, 2001)
 - $h_5(n) \geq 3\lfloor \frac{n-4}{8} \rfloor$ (García, 2012)
 - $h_5(n) \ge \lceil 3/7(n-11) \rceil$ (Aichholzer, Hackl, Vogtenhuber, 2012)
 - $h_5(n) \ge n/2 O(1)$ (Valtr, 2012)

Our results I

Our results I

• We show that $h_5(n)$ is superlinear in n.

• We show that $h_5(n)$ is superlinear in n.

Theorem 1

$$h_5(n) \geq cn \log^{4/5} n.$$

• We show that $h_5(n)$ is superlinear in n.

Theorem 1

There is a fixed constant c > 0 such that for every integer $n \ge 10$ we have

$$h_5(n) \geq cn \log^{4/5} n$$
.

• This proves Conjecture 2. Conjecture 1 is still open.

• We show that $h_5(n)$ is superlinear in n.

Theorem 1

$$h_5(n) \geq cn \log^{4/5} n$$
.

- This proves Conjecture 2. Conjecture 1 is still open.
- A point set $P = A \cup B$ is ℓ -divided if the line ℓ contains no point of P and partitions P into two non-empty subsets A and B.

• We show that $h_5(n)$ is superlinear in n.

Theorem 1

$$h_5(n) \ge cn \log^{4/5} n.$$

- This proves Conjecture 2. Conjecture 1 is still open.
- A point set $P = A \cup B$ is ℓ -divided if the line ℓ contains no point of P and partitions P into two non-empty subsets A and B.

• We show that $h_5(n)$ is superlinear in n.

Theorem 1

$$h_5(n) \geq cn \log^{4/5} n$$
.

- This proves Conjecture 2. Conjecture 1 is still open.
- A point set $P = A \cup B$ is ℓ -divided if the line ℓ contains no point of P and partitions P into two non-empty subsets A and B.

• Theorem 1 is a corollary of the following structural result.

• Theorem 1 is a corollary of the following structural result.

Theorem 2

• Theorem 1 is a corollary of the following structural result.

Theorem 2

• Theorem 1 is a corollary of the following structural result.

Theorem 2

• Theorem 1 is a corollary of the following structural result.

Theorem 2

• Theorem 1 is a corollary of the following structural result.

Theorem 2

• Theorem 1 is a corollary of the following structural result.

Theorem 2

• Theorem 1 is a corollary of the following structural result.

Theorem 2

Let $P = A \cup B$ be an ℓ -divided set with $|A|, |B| \ge 5$ and with neither A nor B in convex position. Then there is a 5-hole in P with points in both A and B (so-called ℓ -divided 5-hole).

• The proof is computer assisted and quite complicated.

• An island in a point set P is a subset Q of P with $P \cap conv(Q) = Q$.

• Note that k-holes in an island of P are also k-holes in P.

- Note that k-holes in an island of P are also k-holes in P.
- We proceed by induction on $t = \log_2 n$.

- Note that k-holes in an island of P are also k-holes in P.
- We proceed by induction on $t = \log_2 n$.
- Base case: For $t = 5^5$, we have $n = 2^t > 10$ and $h_5(10) = 1$ gives at least $c \cdot n \log_2^{4/5} n$ 5-holes in P for c small enough.

• We choose ℓ to be a line partitioning P into A and B of sizes n/2.

• We choose ℓ to be a line partitioning P into A and B of sizes n/2.

- We choose ℓ to be a line partitioning P into A and B of sizes n/2.
- For a parameter $r \in \mathbb{N}$, we partition P into n/(2r) ℓ -divided islands $P_1, \ldots, P_{n/(2r)}$ with $|P_i \cap A|, |P_i \cap B| = r$ for every i.

- We choose ℓ to be a line partitioning P into A and B of sizes n/2.
- For a parameter $r \in \mathbb{N}$, we partition P into n/(2r) ℓ -divided islands $P_1, \ldots, P_{n/(2r)}$ with $|P_i \cap A|, |P_i \cap B| = r$ for every i.

- We choose ℓ to be a line partitioning P into A and B of sizes n/2.
- For a parameter $r \in \mathbb{N}$, we partition P into n/(2r) ℓ -divided islands $P_1, \ldots, P_{n/(2r)}$ with $|P_i \cap A|, |P_i \cap B| = r$ for every i.

- We choose ℓ to be a line partitioning P into A and B of sizes n/2.
- For a parameter $r \in \mathbb{N}$, we partition P into n/(2r) ℓ -divided islands $P_1, \ldots, P_{n/(2r)}$ with $|P_i \cap A|, |P_i \cap B| = r$ for every i.

- We choose ℓ to be a line partitioning P into A and B of sizes n/2.
- For a parameter $r \in \mathbb{N}$, we partition P into n/(2r) ℓ -divided islands $P_1, \ldots, P_{n/(2r)}$ with $|P_i \cap A|, |P_i \cap B| = r$ for every i.
- We apply Theorem 2 to each island P_i .

- We choose ℓ to be a line partitioning P into A and B of sizes n/2.
- For a parameter $r \in \mathbb{N}$, we partition P into n/(2r) ℓ -divided islands $P_1, \ldots, P_{n/(2r)}$ with $|P_i \cap A|, |P_i \cap B| = r$ for every i.
- We apply Theorem 2 to each island P_i .

- We choose ℓ to be a line partitioning P into A and B of sizes n/2.
- For a parameter $r \in \mathbb{N}$, we partition P into n/(2r) ℓ -divided islands $P_1, \ldots, P_{n/(2r)}$ with $|P_i \cap A|, |P_i \cap B| = r$ for every i.
- We apply Theorem 2 to each island P_i .

- We choose ℓ to be a line partitioning P into A and B of sizes n/2.
- For a parameter $r \in \mathbb{N}$, we partition P into n/(2r) ℓ -divided islands $P_1, \ldots, P_{n/(2r)}$ with $|P_i \cap A|, |P_i \cap B| = r$ for every i.
- We apply Theorem 2 to each island P_i .

- We choose ℓ to be a line partitioning P into A and B of sizes n/2.
- For a parameter $r \in \mathbb{N}$, we partition P into n/(2r) ℓ -divided islands $P_1, \ldots, P_{n/(2r)}$ with $|P_i \cap A|, |P_i \cap B| = r$ for every i.
- We apply Theorem 2 to each island P_i .

Theorem 2 implies Theorem 1 – counting

Theorem 2 implies Theorem 1 – counting

• We choose $r = \log_2^{1/5} n = t^{1/5} \ge 5$.

- We choose $r = \log_2^{1/5} n = t^{1/5} \ge 5$.
- If $P_i \cap A$ or $P_i \cap B$ is in convex position for at least half of the islands:

- We choose $r = \log_2^{1/5} n = t^{1/5} \ge 5$.
- If $P_i \cap A$ or $P_i \cap B$ is in convex position for at least half of the islands:
 - Since $|P_i \cap A|, |P_i \cap B| = r$, each such island gives $\binom{r}{5}$ 5-holes in P.

- We choose $r = \log_2^{1/5} n = t^{1/5} \ge 5$.
- If $P_i \cap A$ or $P_i \cap B$ is in convex position for at least half of the islands:
 - Since $|P_i \cap A|, |P_i \cap B| = r$, each such island gives $\binom{r}{5}$ 5-holes in P.
 - In total, the number of 5-holes in P is at least

$$\frac{1}{2} \cdot \frac{n}{2r} \cdot \binom{r}{5} \ge c \cdot n \log_2^{4/5} n.$$

- We choose $r = \log_2^{1/5} n = t^{1/5} \ge 5$.
- If $P_i \cap A$ or $P_i \cap B$ is in convex position for at least half of the islands:
 - Since $|P_i \cap A|, |P_i \cap B| = r$, each such island gives $\binom{r}{5}$ 5-holes in P.
 - In total, the number of 5-holes in P is at least

$$\frac{1}{2} \cdot \frac{n}{2r} \cdot \binom{r}{5} \ge c \cdot n \log_2^{4/5} n.$$

• If $P_i \cap A$ and $P_i \cap B$ are not in convex position for at least half of the islands:

- We choose $r = \log_2^{1/5} n = t^{1/5} \ge 5$.
- If $P_i \cap A$ or $P_i \cap B$ is in convex position for at least half of the islands:
 - Since $|P_i \cap A|, |P_i \cap B| = r$, each such island gives $\binom{r}{5}$ 5-holes in P.
 - In total, the number of 5-holes in P is at least

$$\frac{1}{2} \cdot \frac{n}{2r} \cdot \binom{r}{5} \ge c \cdot n \log_2^{4/5} n.$$

- If $P_i \cap A$ and $P_i \cap B$ are not in convex position for at least half of the islands:
 - Each such P_i gives an ℓ -divided 5-hole in P.

- We choose $r = \log_2^{1/5} n = t^{1/5} \ge 5$.
- If $P_i \cap A$ or $P_i \cap B$ is in convex position for at least half of the islands:
 - Since $|P_i \cap A|, |P_i \cap B| = r$, each such island gives $\binom{r}{5}$ 5-holes in P.
 - In total, the number of 5-holes in P is at least

$$\frac{1}{2} \cdot \frac{n}{2r} \cdot \binom{r}{5} \ge c \cdot n \log_2^{4/5} n.$$

- If $P_i \cap A$ and $P_i \cap B$ are not in convex position for at least half of the islands:
 - Each such P_i gives an ℓ -divided 5-hole in P.
 - We proceed inductively on A and B and obtain at least

$$h_5(n/2) + h_5(n/2) + n/(4r) \ge c \cdot n \log_2^{4/5} n$$

5-holes in P.

• Let $P = A \cup B$ be an ℓ -divided set with $|A|, |B| \ge 5$ and with neither A nor B in convex position.

- Let $P = A \cup B$ be an ℓ -divided set with $|A|, |B| \ge 5$ and with neither A nor B in convex position.
- Suppose for contradiction, that there is no ℓ -divided 5-hole in P.

- Let $P = A \cup B$ be an ℓ -divided set with $|A|, |B| \ge 5$ and with neither A nor B in convex position.
- Suppose for contradiction, that there is no ℓ -divided 5-hole in P.
- The case |A| = 5 = |B| follows from $h_5(10) = 1$ (Harborth, 1978).

- Let $P = A \cup B$ be an ℓ -divided set with $|A|, |B| \ge 5$ and with neither A nor B in convex position.
- Suppose for contradiction, that there is no ℓ -divided 5-hole in P.
- The case |A| = 5 = |B| follows from $h_5(10) = 1$ (Harborth, 1978).
- We reduce P to an island Q by removing extremal points until either:

- Let $P = A \cup B$ be an ℓ -divided set with $|A|, |B| \ge 5$ and with neither A nor B in convex position.
- Suppose for contradiction, that there is no ℓ -divided 5-hole in P.
- The case |A| = 5 = |B| follows from $h_5(10) = 1$ (Harborth, 1978).
- We reduce P to an island Q by removing extremal points until either:
 - $|Q \cap A| = 5$ or $|Q \cap B| = 5$, or

- Let $P = A \cup B$ be an ℓ -divided set with $|A|, |B| \ge 5$ and with neither A nor B in convex position.
- Suppose for contradiction, that there is no ℓ -divided 5-hole in P.
- The case |A| = 5 = |B| follows from $h_5(10) = 1$ (Harborth, 1978).
- We reduce P to an island Q by removing extremal points until either:
 - $|Q \cap A| = 5$ or $|Q \cap B| = 5$, or
 - $|Q \cap A|, |Q \cap B| \ge 6$ and Q is ℓ -critical, i.e., for each extremal point x of Q either $(Q \cap A) \setminus \{x\}$ or $(Q \cap B) \setminus \{x\}$ is in convex position.

- Let $P = A \cup B$ be an ℓ -divided set with $|A|, |B| \ge 5$ and with neither A nor B in convex position.
- Suppose for contradiction, that there is no ℓ -divided 5-hole in P.
- The case |A| = 5 = |B| follows from $h_5(10) = 1$ (Harborth, 1978).
- We reduce P to an island Q by removing extremal points until either:
 - $|Q \cap A| = 5$ or $|Q \cap B| = 5$, or
 - $|Q \cap A|, |Q \cap B| \ge 6$ and Q is ℓ -critical, i.e., for each extremal point x of Q either $(Q \cap A) \setminus \{x\}$ or $(Q \cap B) \setminus \{x\}$ is in convex position.

- Let $P = A \cup B$ be an ℓ -divided set with $|A|, |B| \ge 5$ and with neither A nor B in convex position.
- Suppose for contradiction, that there is no ℓ -divided 5-hole in P.
- The case |A| = 5 = |B| follows from $h_5(10) = 1$ (Harborth, 1978).
- We reduce P to an island Q by removing extremal points until either:
 - $|Q \cap A| = 5$ or $|Q \cap B| = 5$, or
 - $|Q \cap A|, |Q \cap B| \ge 6$ and Q is ℓ -critical, i.e., for each extremal point x of Q either $(Q \cap A) \setminus \{x\}$ or $(Q \cap B) \setminus \{x\}$ is in convex position.

- Let $P = A \cup B$ be an ℓ -divided set with $|A|, |B| \ge 5$ and with neither A nor B in convex position.
- Suppose for contradiction, that there is no ℓ -divided 5-hole in P.
- The case |A| = 5 = |B| follows from $h_5(10) = 1$ (Harborth, 1978).
- We reduce P to an island Q by removing extremal points until either:
 - $|Q \cap A| = 5$ or $|Q \cap B| = 5$, or
 - $|Q \cap A|, |Q \cap B| \ge 6$ and Q is ℓ -critical, i.e., for each extremal point x of Q either $(Q \cap A) \setminus \{x\}$ or $(Q \cap B) \setminus \{x\}$ is in convex position.

- Let $P = A \cup B$ be an ℓ -divided set with $|A|, |B| \ge 5$ and with neither A nor B in convex position.
- Suppose for contradiction, that there is no ℓ -divided 5-hole in P.
- The case |A| = 5 = |B| follows from $h_5(10) = 1$ (Harborth, 1978).
- We reduce P to an island Q by removing extremal points until either:
 - $|Q \cap A| = 5$ or $|Q \cap B| = 5$, or
 - $|Q \cap A|, |Q \cap B| \ge 6$ and Q is ℓ -critical, i.e., for each extremal point x of Q either $(Q \cap A) \setminus \{x\}$ or $(Q \cap B) \setminus \{x\}$ is in convex position.

- Let $P = A \cup B$ be an ℓ -divided set with $|A|, |B| \ge 5$ and with neither A nor B in convex position.
- Suppose for contradiction, that there is no ℓ -divided 5-hole in P.
- The case |A| = 5 = |B| follows from $h_5(10) = 1$ (Harborth, 1978).
- We reduce P to an island Q by removing extremal points until either:
 - $|Q \cap A| = 5$ or $|Q \cap B| = 5$, or
 - $|Q \cap A|, |Q \cap B| \ge 6$ and Q is ℓ -critical, i.e., for each extremal point x of Q either $(Q \cap A) \setminus \{x\}$ or $(Q \cap B) \setminus \{x\}$ is in convex position.

- Let $P = A \cup B$ be an ℓ -divided set with $|A|, |B| \ge 5$ and with neither A nor B in convex position.
- Suppose for contradiction, that there is no ℓ -divided 5-hole in P.
- The case |A| = 5 = |B| follows from $h_5(10) = 1$ (Harborth, 1978).
- We reduce P to an island Q by removing extremal points until either:
 - $|Q \cap A| = 5$ or $|Q \cap B| = 5$, or
 - $|Q \cap A|, |Q \cap B| \ge 6$ and Q is ℓ -critical, i.e., for each extremal point x of Q either $(Q \cap A) \setminus \{x\}$ or $(Q \cap B) \setminus \{x\}$ is in convex position.

- Let $P = A \cup B$ be an ℓ -divided set with $|A|, |B| \ge 5$ and with neither A nor B in convex position.
- Suppose for contradiction, that there is no ℓ -divided 5-hole in P.
- The case |A| = 5 = |B| follows from $h_5(10) = 1$ (Harborth, 1978).
- We reduce P to an island Q by removing extremal points until either:
 - $|Q \cap A| = 5$ or $|Q \cap B| = 5$, or
 - $|Q \cap A|, |Q \cap B| \ge 6$ and Q is ℓ -critical, i.e., for each extremal point x of Q either $(Q \cap A) \setminus \{x\}$ or $(Q \cap B) \setminus \{x\}$ is in convex position.

- Let $P = A \cup B$ be an ℓ -divided set with $|A|, |B| \ge 5$ and with neither A nor B in convex position.
- Suppose for contradiction, that there is no ℓ -divided 5-hole in P.
- The case |A| = 5 = |B| follows from $h_5(10) = 1$ (Harborth, 1978).
- We reduce P to an island Q by removing extremal points until either:
 - $|Q \cap A| = 5$ or $|Q \cap B| = 5$, or
 - $|Q \cap A|, |Q \cap B| \ge 6$ and Q is ℓ -critical, i.e., for each extremal point x of Q either $(Q \cap A) \setminus \{x\}$ or $(Q \cap B) \setminus \{x\}$ is in convex position.

- Let $P = A \cup B$ be an ℓ -divided set with $|A|, |B| \ge 5$ and with neither A nor B in convex position.
- Suppose for contradiction, that there is no ℓ -divided 5-hole in P.
- The case |A| = 5 = |B| follows from $h_5(10) = 1$ (Harborth, 1978).
- We reduce P to an island Q by removing extremal points until either:
 - $|Q \cap A| = 5$ or $|Q \cap B| = 5$, or
 - $|Q \cap A|, |Q \cap B| \ge 6$ and Q is ℓ -critical, i.e., for each extremal point x of Q either $(Q \cap A) \setminus \{x\}$ or $(Q \cap B) \setminus \{x\}$ is in convex position.

• The first case is handled by computer.

• Let a^* be the rightmost inner point of $Q \cap A$ and b^* be the leftmost inner point of $Q \cap B$.

- Let a^* be the rightmost inner point of $Q \cap A$ and b^* be the leftmost inner point of $Q \cap B$.
- Rays from a^* to $(Q \cap A) \setminus \{a^*\}$ partition the plane into a^* -wedges.

- Let a^* be the rightmost inner point of $Q \cap A$ and b^* be the leftmost inner point of $Q \cap B$.
- Rays from a^* to $(Q \cap A) \setminus \{a^*\}$ partition the plane into a^* -wedges.
- Since Q is ℓ -critical, it has a special structure:

- Let a^* be the rightmost inner point of $Q \cap A$ and b^* be the leftmost inner point of $Q \cap B$.
- Rays from a^* to $(Q \cap A) \setminus \{a^*\}$ partition the plane into a^* -wedges.
- Since Q is ℓ -critical, it has a special structure:
 - There are at most two extremal points of Q in $Q \cap A$.

- Let a^* be the rightmost inner point of $Q \cap A$ and b^* be the leftmost inner point of $Q \cap B$.
- Rays from a^* to $(Q \cap A) \setminus \{a^*\}$ partition the plane into a^* -wedges.
- Since Q is ℓ -critical, it has a special structure:
 - There are at most two extremal points of Q in $Q \cap A$.
 - If there are two, then a^* is the unique interior point in $Q \cap A$.

- Let a^* be the rightmost inner point of $Q \cap A$ and b^* be the leftmost inner point of $Q \cap B$.
- Rays from a^* to $(Q \cap A) \setminus \{a^*\}$ partition the plane into a^* -wedges.
- Since Q is ℓ -critical, it has a special structure:
 - There are at most two extremal points of Q in $Q \cap A$.
 - If there are two, then a^* is the unique interior point in $Q \cap A$.
 - By symmetry, analogous statements hold for $Q \cap B$.

- Let a^* be the rightmost inner point of $Q \cap A$ and b^* be the leftmost inner point of $Q \cap B$.
- Rays from a^* to $(Q \cap A) \setminus \{a^*\}$ partition the plane into a^* -wedges.
- Since Q is ℓ -critical, it has a special structure:
 - There are at most two extremal points of Q in $Q \cap A$.
 - If there are two, then a^* is the unique interior point in $Q \cap A$.
 - By symmetry, analogous statements hold for $Q \cap B$.

- Let a^* be the rightmost inner point of $Q \cap A$ and b^* be the leftmost inner point of $Q \cap B$.
- Rays from a^* to $(Q \cap A) \setminus \{a^*\}$ partition the plane into a^* -wedges.
- Since Q is ℓ -critical, it has a special structure:
 - There are at most two extremal points of Q in $Q \cap A$.
 - If there are two, then a^* is the unique interior point in $Q \cap A$.
 - By symmetry, analogous statements hold for $Q \cap B$.

- Let a^* be the rightmost inner point of $Q \cap A$ and b^* be the leftmost inner point of $Q \cap B$.
- Rays from a^* to $(Q \cap A) \setminus \{a^*\}$ partition the plane into a^* -wedges.
- Since Q is ℓ -critical, it has a special structure:
 - There are at most two extremal points of Q in $Q \cap A$.
 - If there are two, then a^* is the unique interior point in $Q \cap A$.
 - By symmetry, analogous statements hold for $Q \cap B$.

• No ℓ -divided 5-hole in Q forces several restrictions on numbers of points from $Q \cap B$ in a^* -wedges.

- Let a^* be the rightmost inner point of $Q \cap A$ and b^* be the leftmost inner point of $Q \cap B$.
- Rays from a^* to $(Q \cap A) \setminus \{a^*\}$ partition the plane into a^* -wedges.
- Since Q is ℓ -critical, it has a special structure:
 - There are at most two extremal points of Q in $Q \cap A$.
 - If there are two, then a^* is the unique interior point in $Q \cap A$.
 - By symmetry, analogous statements hold for $Q \cap B$.

• No ℓ -divided 5-hole in Q forces several restrictions on numbers of points from $Q \cap B$ in a^* -wedges.

- Let a^* be the rightmost inner point of $Q \cap A$ and b^* be the leftmost inner point of $Q \cap B$.
- Rays from a^* to $(Q \cap A) \setminus \{a^*\}$ partition the plane into a^* -wedges.
- Since Q is ℓ -critical, it has a special structure:
 - There are at most two extremal points of Q in $Q \cap A$.
 - If there are two, then a^* is the unique interior point in $Q \cap A$.
 - By symmetry, analogous statements hold for $Q \cap B$.

• No ℓ -divided 5-hole in Q forces several restrictions on numbers of points from $Q \cap B$ in a^* -wedges.

Sketch of the proof of Theorem 2 – obtaining the contradiction

Sketch of the proof of Theorem 2 – obtaining the contradiction

• The restrictions on a*-wedges imply the following result.

• The restrictions on a*-wedges imply the following result.

Proposition 1

Let Q be an ℓ -critical set with no ℓ -divided 5-hole in Q, with $|Q \cap A|, |Q \cap B| \ge 6$, and $|Q \cap A \cap \partial conv(Q)| = 2$. Then $|Q \cap B| < |Q \cap A|$.

• The restrictions on a*-wedges imply the following result.

Proposition 1

Let Q be an ℓ -critical set with no ℓ -divided 5-hole in Q, with $|Q \cap A|, |Q \cap B| \ge 6$, and $|Q \cap A \cap \partial conv(Q)| = 2$. Then $|Q \cap B| < |Q \cap A|$.

• Considering b^* -wedges, we obtain the following statement.

• The restrictions on a*-wedges imply the following result.

Proposition 1

Let Q be an ℓ -critical set with no ℓ -divided 5-hole in Q, with $|Q \cap A|, |Q \cap B| \ge 6$, and $|Q \cap A \cap \partial conv(Q)| = 2$. Then $|Q \cap B| < |Q \cap A|$.

• Considering b*-wedges, we obtain the following statement.

Proposition 2

Let Q be an ℓ -critical set with no ℓ -divided 5-hole in Q, with $|Q \cap A|, |Q \cap B| \ge 6$, and $|Q \cap A \cap \partial conv(Q)| = 2$. Then $|Q \cap A| \le |Q \cap B|$.

• The restrictions on a*-wedges imply the following result.

Proposition 1

Let Q be an ℓ -critical set with no ℓ -divided 5-hole in Q, with $|Q \cap A|, |Q \cap B| \ge 6$, and $|Q \cap A \cap \partial conv(Q)| = 2$. Then $|Q \cap B| < |Q \cap A|$.

• Considering b*-wedges, we obtain the following statement.

Proposition 2

Let Q be an ℓ -critical set with no ℓ -divided 5-hole in Q, with $|Q \cap A|, |Q \cap B| \ge 6$, and $|Q \cap A \cap \partial conv(Q)| = 2$. Then $|Q \cap A| \le |Q \cap B|$.

• Without loss of generality, we assume $|Q \cap A \cap \partial conv(Q)| = 2$.

• The restrictions on a*-wedges imply the following result.

Proposition 1

Let Q be an ℓ -critical set with no ℓ -divided 5-hole in Q, with $|Q \cap A|, |Q \cap B| \ge 6$, and $|Q \cap A \cap \partial conv(Q)| = 2$. Then $|Q \cap B| < |Q \cap A|$.

• Considering b*-wedges, we obtain the following statement.

Proposition 2

Let Q be an ℓ -critical set with no ℓ -divided 5-hole in Q, with $|Q \cap A|, |Q \cap B| \ge 6$, and $|Q \cap A \cap \partial conv(Q)| = 2$. Then $|Q \cap A| \le |Q \cap B|$.

- Without loss of generality, we assume $|Q \cap A \cap \partial conv(Q)| = 2$.
- Propositions 1 and 2 thus give $|Q \cap B| < |Q \cap A| \le |Q \cap B|$, a contradiction.

• We use four computer assisted results in the proof of Theorem 2.

- We use four computer assisted results in the proof of Theorem 2.
- In each of them, we verify certain statement for sets of ≤ 11 points.

- We use four computer assisted results in the proof of Theorem 2.
- In each of them, we verify certain statement for sets of ≤ 11 points.

Computer Lemma 1

- We use four computer assisted results in the proof of Theorem 2.
- In each of them, we verify certain statement for sets of ≤ 11 points.

Computer Lemma 1

Let $P = A \cup B$ be an ℓ -divided set with |A| = 5, |B| = 6, and with A not in convex position. Then there is an ℓ -divided 5-hole in P.

• The search is done by considering all order types of such point sets.

- We use four computer assisted results in the proof of Theorem 2.
- In each of them, we verify certain statement for sets of ≤ 11 points.

Computer Lemma 1

- The search is done by considering all order types of such point sets.
- We wrote two independent implementations:

- We use four computer assisted results in the proof of Theorem 2.
- In each of them, we verify certain statement for sets of ≤ 11 points.

Computer Lemma 1

- The search is done by considering all order types of such point sets.
- We wrote two independent implementations:
 - First implementation uses Aichholzer's database of order types (96 GB of data). Running time: hours.

- We use four computer assisted results in the proof of Theorem 2.
- In each of them, we verify certain statement for sets of ≤ 11 points.

Computer Lemma 1

- The search is done by considering all order types of such point sets.
- We wrote two independent implementations:
 - First implementation uses Aichholzer's database of order types (96 GB of data). Running time: hours.
 - Second implementation does not use the database, but running time can take up to weeks (if not run in parallel).

ullet The assumption $|A|, |B| \ge 5$ in Theorem 2 is necessary.

- The assumption $|A|, |B| \ge 5$ in Theorem 2 is necessary.
 - There are arbitrarily large ℓ -divided point sets $P = A \cup B$ with |A| = 4 and with no ℓ -divided 5-hole.

- The assumption $|A|, |B| \ge 5$ in Theorem 2 is necessary.
 - There are arbitrarily large ℓ -divided point sets $P = A \cup B$ with |A| = 4 and with no ℓ -divided 5-hole.
- Current approach does not work for 6-holes.

- The assumption $|A|, |B| \ge 5$ in Theorem 2 is necessary.
 - There are arbitrarily large ℓ -divided point sets $P = A \cup B$ with |A| = 4 and with no ℓ -divided 5-hole.
- Current approach does not work for 6-holes.
 - Since $h_6(29) = 0$ (Overmars, 2002), the reduction would have to be to at least 30-point sets, which cannot be handled by computer.

- The assumption $|A|, |B| \ge 5$ in Theorem 2 is necessary.
 - There are arbitrarily large ℓ -divided point sets $P = A \cup B$ with |A| = 4 and with no ℓ -divided 5-hole.
- Current approach does not work for 6-holes.
 - Since $h_6(29) = 0$ (Overmars, 2002), the reduction would have to be to at least 30-point sets, which cannot be handled by computer.
- Theorem 2 can be used to improve lower bounds on $h_3(n)$ and $h_4(n)$:

- The assumption $|A|, |B| \ge 5$ in Theorem 2 is necessary.
 - There are arbitrarily large ℓ -divided point sets $P = A \cup B$ with |A| = 4 and with no ℓ -divided 5-hole.
- Current approach does not work for 6-holes.
 - Since $h_6(29) = 0$ (Overmars, 2002), the reduction would have to be to at least 30-point sets, which cannot be handled by computer.
- Theorem 2 can be used to improve lower bounds on $h_3(n)$ and $h_4(n)$:

Theorem 3

We have

$$h_3(n) \ge n^2 + \Omega(n \log^{2/3} n)$$
 and $h_4(n) \ge \frac{n^2}{2} + \Omega(n \log^{3/4} n)$.

- The assumption $|A|, |B| \ge 5$ in Theorem 2 is necessary.
 - There are arbitrarily large ℓ -divided point sets $P = A \cup B$ with |A| = 4 and with no ℓ -divided 5-hole.
- Current approach does not work for 6-holes.
 - Since $h_6(29) = 0$ (Overmars, 2002), the reduction would have to be to at least 30-point sets, which cannot be handled by computer.
- Theorem 2 can be used to improve lower bounds on $h_3(n)$ and $h_4(n)$:

Theorem 3

We have

$$h_3(n) \ge n^2 + \Omega(n \log^{2/3} n)$$
 and $h_4(n) \ge \frac{n^2}{2} + \Omega(n \log^{3/4} n)$.

• Is it possible to obtain stronger bounds on $h_5(n)$ from Theorem 2?

- The assumption $|A|, |B| \ge 5$ in Theorem 2 is necessary.
 - There are arbitrarily large ℓ -divided point sets $P = A \cup B$ with |A| = 4 and with no ℓ -divided 5-hole.
- Current approach does not work for 6-holes.
 - Since $h_6(29) = 0$ (Overmars, 2002), the reduction would have to be to at least 30-point sets, which cannot be handled by computer.
- Theorem 2 can be used to improve lower bounds on $h_3(n)$ and $h_4(n)$:

Theorem 3

We have

$$h_3(n) \ge n^2 + \Omega(n \log^{2/3} n)$$
 and $h_4(n) \ge \frac{n^2}{2} + \Omega(n \log^{3/4} n)$.

• Is it possible to obtain stronger bounds on $h_5(n)$ from Theorem 2?

Thank you.